Asymmetric optical waveguide in one-dimensional organic microplate

Ziyi Yuan , Xiu-Fen Cheng , Zejian Li , Yan Li , Chenlu He

Responsive Materials ›› 2025, Vol. 3 ›› Issue (1) : e20240034

PDF
Responsive Materials ›› 2025, Vol. 3 ›› Issue (1) : e20240034 DOI: 10.1002/rpm.20240034
RESEARCH ARTICLE

Asymmetric optical waveguide in one-dimensional organic microplate

Author information +
History +
PDF

Abstract

Chiral organic materials have garnered significant interest in nanophononics due to their ability to manipulate polarized light and encode optical information. Herein, chiral one-dimensional (1D) organic microplates based on benzocyclazine form homochiral crystals that exhibit excellent optical waveguiding properties. These microplates exhibited highly asymmetric light propagation that depends on the handedness of circularly polarized light (CPL). These homochiral microplates demonstrated selective transmission, with R-microplate favouring left-handed CPL and S-microplate favouring right-handed CPL, showcasing distinct optical loss coefficients for each enantiomer. Multichannel light propagation was observed, where the intensity varied based on the excitation position. These results highlight the potential of 1D chiral microplates for advanced nanophotonic devices, offering chiral-dependent control over light transmission for future applications in optical information processing.

Keywords

asymmetric optical waveguides / chiral organic microplates / circularly polarized light / nanophotonic

Cite this article

Download citation ▾
Ziyi Yuan, Xiu-Fen Cheng, Zejian Li, Yan Li, Chenlu He. Asymmetric optical waveguide in one-dimensional organic microplate. Responsive Materials, 2025, 3(1): e20240034 DOI:10.1002/rpm.20240034

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Zhang, W. Xu, P. Sheng, G. Zhao, D. Zhu, Acc. Chem. Res. 2017, 50, 1654.

[2]

H. Oberhofer, K. Reuter, J. Blumberger, Chem. Rev. 2017, 117, 10319.

[3]

C. Wang, H. Dong, L. Jiang, W. Hu, Chem. Soc. Rev. 2018, 47, 422.

[4]

Z. Qi, Y. J. Ma, D. Yan, Aggregate 2023, 5, e411.

[5]

X. Zhang, H. Dong, W. Hu, Adv. Mater. 2018, 30, 1801048.

[6]

Y. Wang, L. Sun, C. Wang, F. Yang, X. Ren, X. Zhang, H. Dong, W. Hu, Chem. Soc. Rev. 2019, 48, 1492.

[7]

B. Zhou, Z. Qi, M. Dai, C. Xing, D. Yan, Angew. Chem., Int. Ed. 2023, 62, e202309913.

[8]

X. Yang, X. Lin, Y. Zhao, Y. S. Zhao, D. Yan, Angew. Chem., Int. Ed. 2017, 56, 7853.

[9]

H. Zhang, Z. Zhang, K. Ye, J. Zhang, Y. Wang, Adv. Mater. 2006, 18, 2369.

[10]

J. Cui, W. Zhu, N. Gao, J. Li, H. Yang, Y. Jiang, P. Seidel, B. J. Ravoo, G. Li, Angew. Chem., Int. Ed. 2014, 53, 3844.

[11]

R. J. Davey, S. L. M. Schroeder, J. H. ter Horst, Angew. Chem., Int. Ed. 2013, 52, 2166.

[12]

N. Karl, J. Cryst. Growth 1990, 99, 1009.

[13]

X. Zhang, X. Zhang, K. Zou, C.-S. Lee, S.-T. Lee, J. Am. Chem. Soc. 2007, 129, 3527.

[14]

D. Günder, K. Watanabe, T. Taniguchi, G. Witte, ACS Appl. Mater. Interfaces 2020, 12, 38757.

[15]

S. I. Stupp, L. C. Palmer, Chem. Mater. 2014, 26, 507.

[16]

F. Zhang, D. Gu, T. Yu, F. Zhang, S. Xie, L. Zhang, Y. Deng, Y. Wan, B. Tu, D. Zhao, J. Am. Chem. Soc. 2007, 129, 7746.

[17]

Y.-B. Men, J. Sun, Z.-T. Huang, Q.-Y. Zheng, Angew. Chem., Int. Ed. 2009, 48, 2873.

[18]

S. Chen, M.-P. Zhuo, X.-D. Wang, G.-Q. Wei, L.-S. Liao, PhotoniX 2021, 2, 2.

[19]

C. He, M. Wang, X. Sun, Y. Zhu, X. Zhou, S. Xiao, Q. Zhang, F. Liu, Y. Yu, H. Liang, G. Zou, Biosens. Bioelectron. 2019, 129, 50.

[20]

J.-P. Hong, S. Lee, Angew. Chem., Int. Ed. 2009, 48, 3096.

[21]

M.-P. Zhuo, Y.-C. Tao, X.-D. Wang, Y. Wu, S. Chen, L.-S. Liao, L. Jiang, Angew. Chem., Int. Ed. 2018, 57, 11300.

[22]

R. Huang, C. Wang, Y. Wang, H. Zhang, B. Langworthy, Y. Ye, W. Sun, J. Lin, T. Wang, J. Fine, H. Cheng, G. Dotti, P. Huang, Z. Gu, Adv. Mater. 2018, 30, 1800814.

[23]

Q. Chen, B. Tang, K. Ye, H. Hu, H. Zhang, Angew. Chem., Int. Ed. 2024, e202417459.

[24]

Z.-Z. Li, Y.-C. Tao, X.-D. Wang, L.-S. Liao, ACS Photo. 2018, 5, 3763.

[25]

Y.-C. Tao, S. Peng, X.-D. Wang, Z.-Z. Li, X.-J. Zhang, L.-S. Liao, Adv. Funct. Mater. 2018, 28, 1804915.

[26]

C. He, Y. Li, Chin. Chem. Lett. 2023, 34, 108077.

[27]

S. Lin, Y. Tang, W. Kang, H. K. Bisoyi, J. Guo, Q. Li, Nat. Commun. 2023, 14, 3005.

[28]

J. Liu, X. Zhou, X. Tang, Y. Tang, J. Wu, Z. Song, H. Jiang, Y. Ma, B. Li, Y. Lu, Q. Li, Adv. Funct. Mater. 2024, 34, 2414086.

[29]

C. He, J. Qiu, Z. Mu, J. Chen, Y. Wu, Z. Jiang, P. Zhang, X. Qin, G. Xing, X. Liu, Matter 2024, 7, 475.

[30]

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, P. Zoller, Nature 2017, 541, 473.

[31]

C. Chen, L. Gao, W. Gao, C. Ge, X. Du, Z. Li, Y. Yang, G. Niu, J. Tang, Nat. Commun. 2019, 10, 1927.

[32]

S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Science 2001, 294, 1488.

[33]

J. F. Sherson, H. Krauter, R. K. Olsson, B. Julsgaard, K. Hammerer, I. Cirac, E. S. Polzik, Nature 2006, 443, 557.

[34]

C. Wagenknecht, C. M. Li, A. Reingruber, X. H. Bao, A. Goebel, Y. A. Chen, Q. Zhang, K. Chen, J. W. Pan, Nat. Photonics 2010, 4, 549.

[35]

J. D. Thompson, T. G. Tiecke, N. P. Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletic, M. D. Lukin, Science 2013, 340, 1202.

[36]

Z. Chen, F. Zhang, X. Duan, T. Zhang, Q. Gong, Y. Gu, Adv. Opt. Mater. 2018, 6, 1800261.

[37]

S. Huang, X. Xu, Adv. Opt. Funct. 2021, 9, 2002210.

[38]

S. Li, Y. Tang, Q. Fan, Z. Li, X. Zhang, J. Wang, J. Guo, Q. Li, Light Sci. Appl. 2024, 13, 140.

[39]

M. Ikeshita, K. Takahashi, N. Hara, S. Kawamorita, N. Komiya, Y. Imai, T. Naota, Responsive Mater. 2024, 2, e20240017.

[40]

L. Lin, P. Su, Y. Han, Y. Xu, Q. Ni, X. Zhang, P. Xiong, Z. Sun, G. Sun, X. Chen, eScience 2024, 5, 100264.

[41]

R. Zheng, Y. Wei, Z.-C. Zhang, Z.-Y. Wang, L.-L. Ma, Y. Wang, L. Huang, Y.-Q. Lu, Responsive Mater. 2023, 1, e20230017.

[42]

C. He, Z. Feng, S. Shan, M. Wang, X. Chen, G. Zou, Nat. Commun. 2020, 11, 1188.

[43]

C.-L. He, Z. Feng, Y. Li, M. Zhou, L. Zhao, S. Shan, M. Wang, X. Chen, X.-S. Wang, G. Zou, Polym. Chem. 2021, 12, 2433.

[44]

T. G. Mackay, A. Lakhtakia, SPIE Rev. 2010, 1, 018003.

[45]

J. A. Kelly, M. Giese, K. E. Shopsowitz, W. Y. Hamad, M. J. MacLachlan, Acc. Chem. Res. 2014, 47, 1088.

[46]

A. Passaseo, M. Esposito, M. Cuscunà, V. Tasco, Adv. Opt. Mater. 2017, 5, 1601079.

[47]

L. Zhang, H.-X. Wang, S. Li, M. Liu, Chem. Soc. Rev. 2020, 49, 9095.

[48]

Y. Shao, G. Yang, J. Lin, X. Fan, Y. Guo, W. Zhu, Y. Cai, H. Huang, D. Hu, W. Pang, Y. Liu, Y. Li, J. Cheng, X. Xu, Theranostics 2021, 11, 9262.

[49]

S. Ma, J. Ahn, J. Moon, Adv. Mater. 2021, 33, 2005760.

[50]

Z. He, X. Cheng, Z. Wang, W. Zhang, Responsive Mater. 2024, 2, e20240010.

[51]

C. He, G. Yang, Y. Kuai, S. Shan, L. Yang, J. Hu, D. Zhang, Q. Zhang, G. Zou, Nat. Commun. 2018, 9, 5117.

[52]

Z. Li, C. Zhang, Y. Li, Y. Wu, W. Zhang, C. He, J. Mater. Chem. 2025, 13, 1181.

[53]

Z. Li, J. Wang, S. Chi, K. Lin, W. Zhang, C. He, ACS Nano 2024, 18, 34962.

[54]

C. Duan, Z. Cheng, B. Wang, J. Zeng, J. Xu, J. Li, W. Gao, K. Chen, Small 2021, 17, 2007306.

[55]

B. Zhou, D. Yan, Matter 2024, 7, 1950.

[56]

M. Pfeffer, M. A. Rotteveel, G. L. Borgne, J. Fischer, J. Org. Chem. 1992, 57, 2147.

[57]

J. Clark, G. Lanzani, Nat. Photonics 2010, 4, 438.

[58]

W. Yuan, J. Cheng, X. Li, M. Wu, Y. Han, C. Yan, G. Zou, K. Müllen, Y. Chen, Angew. Chem., Int. Ed. 2020, 59, 9940.

[59]

F. Nie, D. Yan, Nat. Commun. 2024, 15, 9491.

[60]

F. Nie, D. Yan, Nat. Commun. 2024, 15, 5519.

RIGHTS & PERMISSIONS

2025 The Author(s). Responsive Materials published by John Wiley & Sons Australia, Ltd on behalf of Southeast University.

AI Summary AI Mindmap
PDF

210

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/