Bacteria-responsive transformable peptide-based nanomaterials inspired by human α-defensin 6 for labeling and entrapping pathogenic bacteria

Chenlong Zhou , Qi Tang , Peng Tan , Tao Wang , Yucheng Zhang , Shuaikang Yang , Guanghui Zhao , Yue Feng , Xi Ma

Responsive Materials ›› 2025, Vol. 3 ›› Issue (2) : e20240029

PDF
Responsive Materials ›› 2025, Vol. 3 ›› Issue (2) : e20240029 DOI: 10.1002/rpm.20240029
RESEARCH ARTICLE

Bacteria-responsive transformable peptide-based nanomaterials inspired by human α-defensin 6 for labeling and entrapping pathogenic bacteria

Author information +
History +
PDF

Abstract

Antimicrobial resistance caused by overuse of antibiotics has promoted the demand for effective antibacterial materials. However, the development of existing antibacterial strategies mostly focuses on direct sterilization, which may lead to flora imbalance and drug resistance. Here, a series of peptide-based aggregation-induced emssion nanomaterials (PBANs) with multiple structural domains were designed by mimicking the self-assembly of human α-defensin 6. Specifically, PBANs self-assemble to form nanoparticles in physiological environments and in situ transform into nanofibers on bacterial surfaces through receptor-ligand interactions in infected microenvironments, resulting in enhanced fluorescence signal and activation of functions, while labeling and entrapping bacteria. Different from traditional antibacterial strategies that directly kill pathogenic microorganisms, PBANs can inhibit bacterial motility and invasion into the host system through physical barriers and affecting energy metabolism pathways. In addition, PBANs can further recruit macrophages to the infection site to engulf entrapped bacteria, thereby synergistically reducing the infection efficiency. In mouse and piglet systemic infection models, the PBANs showed favorable therapeutic efficacy, significantly reducing bacterial load and levels of inflammation factors. Overall, this study provides perspectives for developing biomimetic stimuli-responsive nanomaterials to combat bacterial infections.

Keywords

aggregation-induced emission / bacterial infection / intelligent-responsive / peptide-based nanomaterials / structural transformation

Cite this article

Download citation ▾
Chenlong Zhou, Qi Tang, Peng Tan, Tao Wang, Yucheng Zhang, Shuaikang Yang, Guanghui Zhao, Yue Feng, Xi Ma. Bacteria-responsive transformable peptide-based nanomaterials inspired by human α-defensin 6 for labeling and entrapping pathogenic bacteria. Responsive Materials, 2025, 3(2): e20240029 DOI:10.1002/rpm.20240029

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. Tan, C. C. Wu, Q. Tang, T. Wang, C. L. Zhou, Y. K. Ding, H. Y. Fu, S. R. Xu, Y. Q. Feng, Y. C. Zhang, Q. Dai, X. Ma, Adv. Mater. 2023, 35, 2210766.

[2]

U. Theuretzbacher, S. Gottwalt, P. Beyer, M. Butler, L. Czaplewski, C. Lienhardt, L. Moja, M. Paul, S. Paulin, J. H. Rex, L. L. Silver, M. Spigelman, G. E. Thwaites, J. P. Paccaud, S. Harbarth, Lancet Infect. Dis. 2019, 19, e40.

[3]

M. M. Xie, M. Gao, Y. Yun, M. Malmsten, V. M. Rotello, R. Zboril, O. Akhavan, A. Kraskouski, J. Amalraj, X. M. Cai, J. M. Lu, H. Z. Zheng, R. B. Li, Angew. Chem., Int. Ed. 2023, 62, e202217345.

[4]

N. Ma, X. Chen, L. J. Johnston, X. J. I. Ma, iMeta 2022, 1, e54.

[5]

K. A. Muñoz, R. J. Ulrich, A. K. Vasan, M. Sinclair, P.-C. Wen, J. R. Holmes, H. Y. Lee, C.-C. Hung, C. J. Fields, E. J. N. Tajkhorshid, Nature 2024, 630, 429.

[6]

C. Liu, N. Ma, Y. Feng, M. Zhou, H. Li, X. Zhang, X. J. A. R. Ma, O. Health, AROH 2023, 1, 92.

[7]

J. Jeon, D. Bukharina, M. Kim, S. Kang, J. Kim, Y. Zhang, V. Tsukruk, Responsive Mater. 2024, 2, e20230032.

[8]

H. P. Li, X. L. Qian, H. Mohanram, X. Han, H. T. Qi, G. J. Zou, F. H. Yuan, A. Miserez, T. Liu, Q. Yang, H. J. Gao, J. Yu, Nat. Nanotechnol. 2024, 19, 1141.

[9]

M. Kamioka, Y. Goto, K. Nakamura, Y. Yokoi, R. Sugimoto, S. Ohira, Y. Kurashima, S. Umemoto, S. Sato, J. Kunisawa, Y. Takahashi, S. E. Domino, J. C. Renauld, S. Nakae, Y. Iwakura, P. B. Ernst, T. Ayabe, H. Kiyono, Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2115230119.

[10]

B. P. Lazzaro, M. Zasloff, J. Rolff, Science 2020, 368, 487.

[11]

S. Barman, L. B. Kurnaz, R. Leighton, M. W. Hossain, A. W. Decho, C. B. Tang, Biomaterials 2024, 311, 122690.

[12]

N. D. T. Tram, J. Xu, D. Mukherjee, A. E. Obanel, V. Mayandi, V. Selvarajan, X. Zhu, J. Teo, V. A. Barathi, R. Lakshminarayanan, P. L. R. Ee, Adv. Funct. Mater. 2023, 33.

[13]

Y. Z. Wu, P. Liu, B. Mehrjou, P. K. Chu, Adv. Mater. 2024, 36, 2305940.

[14]

Y. Fan, X. D. Li, P. P. He, X. X. Hu, K. Zhang, J. Q. Fan, P. P. Yang, H. Y. Zheng, W. Tian, Z. M. Chen, L. Ji, H. Wang, L. Wang, Sci. Adv. 2020, 6, eaaz4767.

[15]

X. D. Zhang, X. K. Chen, J. Song, J. M. Zhang, X. Z. Ren, Y. L. Zhao, Adv. Mater. 2020, 32, 215600.

[16]

S. Y. Qin, J. Q. Feng, Y. J. Cheng, W. L. Liu, A. Q. Zhang, L. Wang, H. Wang, X. Z. Zhang, Coord. Chem. Rev. 2024, 502, 215600.

[17]

Z. Zhang, Z. Hu, J. Xing, Q. Li, Responsive Mater. 2024, 2, e20240009.

[18]

J. S. Chen, Q. Y. Peng, X. W. Peng, H. Zhang, H. B. Zeng, Chem. Rev. 2022, 122, 14594.

[19]

X. F. Hou, X. Chen, J. H. Wei, Y. Xu, X. M. Chen, Q. Li, Responsive Mater. 2023, 1, e20230016.

[20]

B. B. Sun, X. P. Guo, M. Feng, S. P. Cao, H. W. Yang, H. L. Wu, M. van Stevendaal, R. Oerlemans, J. N. Liang, Y. Q. Ouyang, J. C. M. van Hest, Angew. Chem., Int. Ed. 2022, 61, e202208732.

[21]

B. Jana, S. Jin, E. M. Go, Y. Cho, D. Kim, S. Kim, S. K. Kwak, J. H. Ryu, J. Am. Chem. Soc. 2023, 145, 18414.

[22]

H. Yin, Y. Hua, S. W. Feng, Y. Xu, Y. Ding, S. C. Liu, D. S. Chen, F. R. Du, G. L. Liang, W. J. Zhan, Y. Shen, Adv. Mater. 2024, 36, 2308504.

[23]

D. B. Cheng, X. H. Zhang, Y. J. Gao, L. Ji, D. Y. Hou, Z. Q. Wang, W. H. Xu, Z. Y. Qiao, H. Wang, J. Am. Chem. Soc. 2019, 141, 7235.

[24]

V. Tiku, M. W. Tan, Trends Immunol. 2021, 42, 1024.

[25]

M. L. Freckelton, B. T. Nedved, Y.-S. Cai, S. Cao, H. Turano, R. A. Alegado, M. G. Hadfield, Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2200795119.

[26]

Q. Tang, P. Tan, Z. L. Dai, T. Wang, S. R. Xu, Y. K. Ding, J. Q. Jin, X. Zhang, Y. C. Zhang, C. L. Zhou, Z. T. Yue, H. Y. Fu, J. S. Yan, X. Ma, Acta Biomater. 2023, 157, 210.

[27]

N. Y. Zhang, X. J. Hu, H. W. An, J. X. Liang, H. Wang, Biomaterials 2022, 287, 121655.

[28]

Q. H. Cheng, A. Y. Hao, P. Y. Xing, ACS Nano 2024, 18, 5766.

[29]

R. Saravanan, D. A. Holdbrook, J. Petrlova, S. Singh, N. A. Berglund, Y. K. Choong, S. Kjellström, P. J. Bond, M. Malmsten, A. Schmidtchen, Nat. Commun. 2018, 9, 2762.

[30]

Y. Wang, S. L. Qiao, J. Wang, M. Z. Yu, N. N. Wang, M. Mamuti, H. W. An, Y. X. Lin, H. Wang, Adv. Mater. 2023, 36, 2306248.

[31]

J. D. Luo, Z. L. Xie, J. W. Y. Lam, L. Cheng, H. Y. Chen, C. F. Qiu, H. S. Kwok, X. W. Zhan, Y. Q. Liu, D. B. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740.

[32]

J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718.

[33]

L. Wang, B. Fu, D. Y. Hou, Y. L. Lv, G. Yang, C. Li, J. C. Shen, B. Kong, L. B. Zheng, Y. Qiu, H. L. Wang, C. Liu, J. J. Zhang, S. Y. Bai, L. L. Li, H. Wang, W. H. Xu, Biomaterials 2023, 296, 122060.

[34]

F. Y. Zhu, L. J. Mei, R. Tian, C. Li, Y. L. Wang, S. L. Xiang, M. Q. Zhu, B. Z. Tang, Chem. Soc. Rev. 2024, 53, 3350.

[35]

Y. Tang, X. Wang, S. Chen, Q. Li, Responsive Mater. 2024, 2, e20240003.

[36]

L. P. Zhang, Y. Li, G. N. Mu, L. J. Yang, C. H. Ren, Z. Y. Wang, Q. X. Guo, J. F. Liu, C. H. Yang, Anal. Chem. 2022, 94, 2236.

[37]

Y. Yuan, L. Chen, L. F. Kong, L. L. Qiu, Z. D. Fu, M. M. Sun, Y. Liu, M. M. Cheng, S. Y. Ma, X. A. Wang, C. H. Zhao, J. Jiang, X. Z. Zhang, L. P. Wang, L. Z. Gao, Nat. Commun. 2023, 14, 5808.

[38]

G. Petruk, M. Puthia, F. Samsudin, J. Petrlova, F. Olm, M. Mittendorfer, S. Hyllén, D. Edström, A. C. Strömdahl, C. Diehl, S. Ekström, B. Walse, S. Kjellström, P. J. Bond, S. Lindstedt, A. Schmidtchen, Nat. Commun. 2023, 14, 6097.

[39]

J. Petrlova, F. C. Hansen, M. J. A. van der Plas, R. G. Huber, M. Mörgelin, M. Malmsten, P. J. Bond, A. Schmidtchen, Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E4213.

[40]

P. Tan, Q. Tang, S. R. Xu, Y. C. Zhang, H. Y. Fu, X. Ma, Adv. Sci. 2022, 9, 2105955.

[41]

J. J. Wang, X. J. Dou, J. Song, Y. F. Lyu, X. Zhu, L. Xu, W. Z. Li, A. S. Shan, Med. Res. Rev. 2019, 39, 831.

[42]

B. F. Qiao, F. Jiménez-Angeles, T. D. Nguyen, M. O. de la Cruz, Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 19274.

[43]

K. Y. Lee, M. Ikura, C. B. Marshall, Angew. Chem., Int. Ed. 2023, 62, e202218698.

[44]

Y. Zhou, Q. Q. Li, Y. Wu, X. Y. Li, Y. Zhou, Z. Wang, H. Liang, F. Q. Ding, S. Hong, N. F. Steinmetz, H. Cai, ACS Nano 2023, 17, 8004.

[45]

L. Zhang, D. Jing, N. Jiang, T. Rojalin, C. M. Baehr, D. L. Zhang, W. W. Xiao, Y. Wu, Z. Q. Cong, J. J. Li, Y. P. Li, L. Wang, K. S. Lam, Nat. Nanotechnol. 2020, 15, 145.

[46]

P. Chairatana, E. M. Nolan, Acc. Chem. Res. 2017, 50, 960.

[47]

P. Y. Li, P. Holliger, S. Tagami, Nat. Commun. 2022, 13, 3050.

[48]

Y. P. Zhuang, F. Lin, L. Xiang, Z. W. Cai, F. Wang, W. G. Cui, Adv. Mater. 2024, 36, 2312556.

[49]

A. Paul, G. Jacoby, D. L. Bar-Yosef, R. Beck, E. Gazit, D. Segal, ACS Nano 2021, 15, 11854.

[50]

M. G. Percy, A. Gründling, in Annual Review of Microbiology (Ed: S. Gottesman), 2014, Vol. 68, p. 81.

[51]

P. Chairatana, E. M. Nolan, J. Am. Chem. Soc. 2014, 136, 13267.

[52]

S. Rice, K. Carr, P. Sobiesuo, H. Shabaninejad, G. Orozco-Leal, V. Kontogiannis, C. Marshall, F. Pearson, N. Moradi, N. O'Connor, A. Stoniute, C. Richmond, D. Craig, B. Allegranzi, A. Cassini, Lancet Infect. Dis. 2023, 23, e228.

[53]

H. L. Su, C. C. Chou, D. J. Hung, S. H. Lin, I. C. Pao, J. H. Lin, F. L. Huang, R. X. Dong, J. J. Lin, Biomaterials 2009, 30, 5979.

[54]

N. Wadhwa, H. C. Berg, Nat. Rev. Microbiol. 2022, 20, 161.

[55]

D. B. Kearns, Nat. Rev. Microbiol. 2010, 8, 634.

[56]

H. T. Chu, M. Pazgier, G. Jung, S. P. Nuccio, P. A. Castillo, M. F. de Jong, M. G. Winter, S. E. Winter, J. Wehkamp, B. Shen, N. H. Salzman, M. A. Underwood, R. M. Tsolis, G. M. Young, W. Y. Lu, R. I. Lehrer, A. J. Bäumler, C. L. Bevins, Science 2012, 337, 477.

[57]

N. Mookherjee, M. A. Anderson, H. P. Haagsman, D. J. Davidson, Nat. Rev. Drug Discovery 2020, 19, 311.

[58]

N. Gao, P. F. Bai, C. Y. Fang, W. P. Wu, C. P. Bi, J. J. Wang, A. S. Shan, ACS Nano 2024, 18, 25446.

[59]

M. Diez, B. Zimmermann, M. Börsch, M. König, E. Schweinberger, S. Steigmiller, R. Reuter, S. Felekyan, V. Kudryavtsev, C. A. M. Seidel, P. Gräber, Nat. Struct. Mol. Biol. 2004, 11, 135.

[60]

F. Altegoer, T. E. F. Quax, P. Weiland, P. Nussbaum, P. I. Giammarinaro, M. Patro, Z. Q. Li, D. Oesterhelt, M. Grininger, S. V. Albers, G. Bange, Nat. Commun. 2022, 13, 2857.

[61]

H. Itoh, A. Takahashi, K. Adachi, H. Noji, R. Yasuda, M. Yoshida, K. Kinosita, Nature 2004, 427, 465.

[62]

A. Stacy, V. Andrade-Oliveira, J. A. McCulloch, B. Hild, J. H. Oh, P. J. Perez-Chaparro, C. K. Sim, A. I. Lim, V. M. Link, M. Enamorado, G. Trinchieri, J. A. Segre, B. Rehermann, Y. Belkaid, Cell 2021, 184, 615.

[63]

M. G. Bertero, R. A. Rothery, M. Palak, C. Hou, D. Lim, F. Blasco, J. H. Weiner, N. C. J. Strynadka, Nat. Struct. Biol. 2003, 10, 681.

[64]

C. Wang, Y. J. Chao, G. Matera, Q. Gao, J. Vogel, Nucleic Acids Res. 2020, 48, 2126.

[65]

J. D. Kemp, D. E. Atkinson, J. Bacteriol. 1966, 92, 628.

[66]

L. Wampach, A. Heintz-Buschart, J. V. Fritz, J. Ramiro-Garcia, J. Habier, M. Herold, S. Narayanasamy, A. Kaysen, A. H. Hogan, L. Bindl, J. Bottu, R. Halder, C. Sjöqvist, P. May, A. F. Andersson, C. De Beaufort, P. Wilmes, Nat. Commun. 2018, 9, 5091.

[67]

Y. X. Zhu, Q. Dou, L. C. Du, Y. Wang, Trends Microbiol. 2023, 31, 749.

[68]

C. S. Poojari, K. C. Scherer, J. S. Hub, Nat. Commun. 2021, 12, 6594.

[69]

B. H. Gan, J. Gaynord, S. M. Rowe, T. Deingruber, D. R. Spring, Chem. Soc. Rev. 2021, 50, 7820.

[70]

Y. X. Li, Z. Zhong, W. P. Zhang, P. Y. Qian, Nat. Commun. 2018, 9, 3273.

[71]

K. E. Rudd, S. C. Johnson, K. M. Agesa, K. A. Shackelford, D. Tsoi, D. R. Kievlan, D. V. Colombara, K. S. Ikuta, N. Kissoon, S. Finfer, C. Fleischmann-Struzek, F. R. Machado, K. K. Reinhart, K. Rowan, C. W. Seymour, R. S. Watson, T. E. West, F. Marinho, S. I. Hay, R. Lozano, A. D. Lopez, D. C. Angus, C. J. L. Murray, M. Naghavi, Lancet 2020, 395, 200.

[72]

X. Y. Li, S. Q. Qu, X. B. Song, C. M. Wu, J. Z. Shen, K. Zhu, Adv. Sci. 2023, 10, 2302950.

[73]

J. H. Yan, J. W. Zhang, Y. A. Wang, H. Liu, X. P. Sun, A. X. Li, P. F. Cui, L. M. Yu, X. F. Yan, Z. Y. He, Adv. Sci. 2023, 10, 2207448.

[74]

S. Yeudall, C. M. Upchurch, P. V. Seegren, C. M. Pavelec, J. Greulich, M. C. Lemke, T. E. Harris, B. N. Desai, K. L. Hoehn, N. Leitinger, Sci. Adv. 2022, 8, eabq1984.

[75]

N. D. T. Tram, Q. T. N. Tran, J. Xu, J. C. T. Su, W. P. Liao, W. S. F. Wong, P. L. R. Ee, Adv. Healthcare Mater. 2023, 12, 2203232.

[76]

J. K. Lunney, A. Van Goor, K. E. Walker, T. Hailstock, J. Franklin, C. H. Dai, Sci. Transl. Med. 2021, 13, eabd5758.

[77]

P. Tan, Z. H. Sun, Q. Tang, S. R. Xu, T. Wang, Y. K. Ding, H. Y. Fu, C. L. Zhou, Y. C. Zhang, Z. T. Yue, X. Ma, Nano Today 2023, 49, 101793.

RIGHTS & PERMISSIONS

2025 The Author(s). Responsive Materials published by John Wiley & Sons Australia, Ltd on behalf of Southeast University.

AI Summary AI Mindmap
PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/