Rapid photo-responsive dynamic disulfide strategy for accessing self-healing, reconfigurable shape of high-strength shape memory polyurethane

Qingxiang Zhang , Jing Yang , Kai Zhou , Nan Zhang , Xianqiang Pei , Xinrui Zhang , Shoubing Chen , Heming Luo , Tingmei Wang , Qihua Wang , Yaoming Zhang

Responsive Materials ›› 2024, Vol. 2 ›› Issue (4) : e20240023

PDF
Responsive Materials ›› 2024, Vol. 2 ›› Issue (4) : e20240023 DOI: 10.1002/rpm.20240023
RESEARCH ARTICLE

Rapid photo-responsive dynamic disulfide strategy for accessing self-healing, reconfigurable shape of high-strength shape memory polyurethane

Author information +
History +
PDF

Abstract

Enabling soft shape memory polyurethane (SMPU) with self-healing is an effective strategy to extend its service life; however, the tradeoff between high mechanical strength and rapid self-healing to meet the practical applications remains a challenge. Herein, we prepared a polyurethane (PU) with polycarbonate diol as a soft segment, incorporating urea bonds and dynamic disulfide bonds through chain extenders. This material, denoted as PU-NSS75, exhibited a remarkable tensile strength of 51.4 MPa, attributed to the synergistic energy dissipation effect of urea hydrogen bonding and dynamic disulfide bonds during stretching, leading to enhanced mechanical properties of the PU. The dynamic nature of the bonds, including hydrogen bonding and disulfide bonds, endowed the PU with exceptional self-healing capabilities. Furthermore, leveraging the reversible mechanism of disulfide bonds under UV irradiation at room temperature, PU-NSS75 achieved complete self-healing within 1 min. This photoinduced dynamic chemical bonding also facilitated rapid reconfigure the original shape of the soft SMPU at room temperature, thus broadening its potential applications. This study offers a design approach to enhance soft shape memory polyurethane materials, while the rapid self-healing and shape reconfiguration provide new avenues for expanding the applications of shape memory polyurethanes.

Keywords

dynamic bonds / high strength / photo-responsiveness / self-healing / shape memory polyurethane

Cite this article

Download citation ▾
Qingxiang Zhang, Jing Yang, Kai Zhou, Nan Zhang, Xianqiang Pei, Xinrui Zhang, Shoubing Chen, Heming Luo, Tingmei Wang, Qihua Wang, Yaoming Zhang. Rapid photo-responsive dynamic disulfide strategy for accessing self-healing, reconfigurable shape of high-strength shape memory polyurethane. Responsive Materials, 2024, 2(4): e20240023 DOI:10.1002/rpm.20240023

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Ma, P. Xue, Y. Tang, R. Bi, X. Xu, L. Wang, Q. Li, Responsive Mater. 2024, 2, e20230026.

[2]

J. Gao, Y. Tang, D. Martella, J. Guo, D. S. Wiersma, Q. Li, Responsive Mater. 2023, 1, e20230008.

[3]

J. Wang, X. Lin, R. Wang, Y. Lu, L. Zhang, Adv. Funct. Mater. 2023, 33, 2211579.

[4]

G. Wu, M. Panahi-Sarmad, S. Van Vlierberghe, R. Xu, X. Hou, Z. Cui, X. Xiao, Chem. Eng. J. 2022, 450, 138253.

[5]

X. Wang, Y. He, J. Leng, Macromol. Mater. Eng. 2022, 307, 2100778.

[6]

J. Jia, N. Gao, R. Li, S. Liao, S. Lyu, Y. Wang, Chem. Eng. J. 2022, 431, 133285.

[7]

Y. Wang, M. Zhu, C. Hao, R. Dai, M. Huang, H. Liu, S. He, W. Liu, Eur. Polym. J. 2022, 167, 111060.

[8]

S. Dai, S. Yue, Z. Ning, N. Jiang, Z. Gan, ACS Appl. Mater. Interfaces 2022, 14, 14668.

[9]

S. Li, H. Zhang, J. Xie, Z. Wang, K. Wang, Z. Zhai, J. Ding, S. Wang, L. Shen, J. Wen, Y. D. Tang, H. Wang, Y. Zhu, C. Gao, Mater. Horiz. 2023, 10, 3438.

[10]

M. Li, J. Chen, M. Shi, H. Zhang, P. X. Ma, B. Guo, Chem. Eng. J. 2019, 375, 121999.

[11]

X. Zhao, R. Dong, B. Guo, et al., ACS Appl. Mater. Interfaces 2017, 9, 29595.

[12]

A. Shaabani, R. Sedghi, H. Motasadizadeh, R. Dinarvand, Chem. Eng. J. 2021, 411, 128449.

[13]

Z. Guo, C. Bao, X. Wang, X. Lu, H. Sun, X. Li, J. Li, J. Sun, J. Mater. Chem. A. 2021, 9, 11025.

[14]

Y. Wang, X. Huang, X. Zhang, Nat. Commun. 2021, 12, 1291.

[15]

M. A. Taher, Y. Su, X. Wang, X. Xu, M. A. Habib, J. Zhu, J. Chen, Mater. Adv. 2024, 5, 199.

[16]

X. Liu, X. Liu, W. Li, Y. Ru, Y. Li, A. Sun, L. Wei, Chem. Eng. J. 2021, 410, 128300.

[17]

J. Xu, X. Wang, X. Zhang, Y. Zhang, Z. Yang, S. Li, L. Tao, Q. Wang, T. Wang, Chem. Eng. J. 2023, 451, 138673.

[18]

Y. Guo, X. An, X. Qian, ACS Appl. Mater. Interfaces 2023, 15, 19362.

[19]

Q. Qu, H. Wang, J. He, T. Qin, Y. Da, X. Tian, Soft Matter 2020, 16, 9128.

[20]

Q. Zhang, J. Duan, Q. Guo, J. Zhang, D. Zheng, F. Yi, X. Yang, Y. Duan, Q. Tang, Angew. Chem. Int. Ed. 2022, 61, e202116632.

[21]

L. Jiang, Y. Lei, Y. Xiao, X. Fu, W. Kong, Y. Wang, J. Lei, J. Mater. Chem. A. 2020, 8, 22369.

[22]

J. Tan, H. Lei, D.-J. Liaw, X. Chen, C. Cui, Q. Zhong, Y. Cheng, Y. Zhang, Macromol. Rapid Commun. 2019, 40, 1900149.

[23]

M. Röttger, T. Domenech, R. Van Der Weegen, A. Breuillac, R. Nicolaÿ, L. Leibler, Science 2017, 356, 62.

[24]

Y. Yang, F.-S. Du, Z.-C. Li, ACS Appl. Polym. Mater. 2020, 2, 5630.

[25]

A. Zhang, J. Long, L. Jia, Q. Gao, H. Fan, J. Xiang, J. Appl. Polym. Sci. 2023, 140, e53478.

[26]

G. Chen, X. Deng, L. Zhu, S. Handschuh-Wang, T. Gan, B. Wang, Q. Wu, H. Fang, N. Ren, X. Zhou, J. Mater. Chem. A. 2021, 9, 10953.

[27]

Z. Liu, X. Zhu, Y. Tian, K. Zhou, J. Cheng, J. Zhang, Chem. Eng. J. 2022, 448, 137749.

[28]

X. Liu, X. Song, B. Chen, J. Liu, Z. Feng, W. Zhang, J. Zeng, L. Liang, React. Funct. Polym. 2022, 170, 105121.

[29]

J. Xia, T. Li, C. Lu, H. Xu, Macromolecules 2018, 51, 7435.

[30]

S. Wang, Y. Yang, H. Ying, X. Jing, B. Wang, Y. Zhang, J. Cheng, ACS Appl. Mater. Interfaces 2020, 12, 35403.

[31]

K. Chang, H. Jia, S.-Y. Gu, Eur. Polym. J. 2019, 112, 822.

[32]

A. Khan, C.-F. Wang, R. R. Kisannagar, W. T. Chuang, P. Q. Nhien, S. Mahmood, M. Katiyar, D. Gupta, K. H. Wei, H. C. Lin, J. Mater. Chem. A. 2023, 11, 305.

[33]

L. F. Fan, M. Z. Rong, M. Q. Zhang, X. D. Chen, J. Mater. Chem. A. 2018, 6, 16053.

[34]

Y. Huang, Z. Shi, H. Wang, J. Wang, Z. Xue, Energy Storage Mater. 2022, 51, 1.

[35]

J. Shi, Z. Wang, T. Zheng, X. Liu, B. Guo, J. Xu, Mater. Horiz. 2022, 9, 3070.

[36]

X. Yue, C. Dong, Y. Wang, Z. Cui, Z. Ren, Z. H. Guan, Chem. Eng. J. 2023, 457, 141290.

[37]

Q. Zhang, J. Yang, P. Cao, J. Gong, Z. Tang, K. Zhou, H. Luo, X. Zhang, T. Wang, S. Chen, X. Pei, Q. Wang, Y. Zhang, Macromol. Rapid Commun. 2024, 2400277.

[38]

J. Zhang, W. Hu, Polymer 2023, 283, 126278.

[39]

I. Noda, A. E. Dowrey, C. Marcott, G. M. Story, Y. Ozaki, Appl. Spectmsc. 2000, 54, 236A.

[40]

Z.-W. An, R. Xue, K. Ye, H. Zhao, Y. Liu, P. Li, Z. M. Chen, C. X. Huang, G. H. Hu, Nanoscale 2023, 15, 6505.

[41]

S. Huang, Y. Shen, H. K. Bisoyi, Y. Tao, Z. Liu, M. Wang, H. Yang, J. Am. Chem. Soc. 2021, 143, 12543.

[42]

F. Klepel, B. J. Ravoo, Org. Biomol. Chem. 2017, 15, 3840.

[43]

S. Huang, X. Kong, Y. Xiong, X. Zhang, H. Chen, W. Jiang, Y. Niu, W. Xu, C. Ren, Eur. Polym. J. 2020, 141, 110094.

RIGHTS & PERMISSIONS

2024 The Author(s). Responsive Materials published by John Wiley & Sons Australia, Ltd on behalf of Southeast University.

AI Summary AI Mindmap
PDF

203

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/