Modulating the macroscopic anisotropy of liquid crystalline polymers by polarized light

Yiyi Xu , Mengshi Jin , Jinyu Wang , Shuai Huang , Quan Li

Responsive Materials ›› 2024, Vol. 2 ›› Issue (4) : e20240020

PDF
Responsive Materials ›› 2024, Vol. 2 ›› Issue (4) : e20240020 DOI: 10.1002/rpm.20240020
REVIEW ARTICLE

Modulating the macroscopic anisotropy of liquid crystalline polymers by polarized light

Author information +
History +
PDF

Abstract

Photoalignment technology is serving as an emerging technology for programming liquid crystalline polymer (LCP) materials due to its advantages including noncontact, high resolution, spatial control, programmability, and high efficiency. In this review, we report the research progress in implementing polarized light to design the anisotropy of LCPs, which is categorized based on the photoalignment mechanisms. The alignment approaches and the different stimulus-responsive behaviors of the materials after photoalignment are discussed. Additionally, we have summarized the applications of photoaligned LCPs such as liquid crystal displays, optical components, intelligent soft actuators, and beyond. Finally, the challenges and future directions of the technology are outlined.

Keywords

liquid crystalline polymer / photoalignment / photoisomerization / photocrosslinking / photodegradation

Cite this article

Download citation ▾
Yiyi Xu, Mengshi Jin, Jinyu Wang, Shuai Huang, Quan Li. Modulating the macroscopic anisotropy of liquid crystalline polymers by polarized light. Responsive Materials, 2024, 2(4): e20240020 DOI:10.1002/rpm.20240020

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) T. Ikeda, J.-i. Mamiya, Y. Yu, Angew. Chem., Int. Ed. 2007, 46, 506.b) C. J. Barrett, J.-i. Mamiya, K. G. Yager, T. Ikeda, Soft Matter 2007, 3, 1249.c) J. Wei, Y. Yu, Soft Matter 2012, 8, 8050.d) H. Jiang, C. Li, X. Huang, Nanoscale 2013, 5, 5225.e) T. Ube, T. Ikeda, Angew. Chem., Int. Ed. 2014, 53, 10290.f) X. Qing, L. Qin, W. Gu, Y. Yu, Liq. Cryst. 2016, 43, 2114.g) H. K. Bisoyi, Q. Li, Chem. Rev. 2016, 116, 15089.h) E. Pantuso, G. De Filpo, F. P. Nicoletta, Adv. Opt. Mater. 2019, 7, 1900252.i) X. Pang, J.-a. Lv, C. Zhu, L. Qi, Y. Yu, Adv. Mater. 2019, 31, 1904224.j) R. C. Lan, X.-G. Hu, J. Y. Chen, X. P. Zeng, X. Y. Chen, T. J. Du, X. Y. Song, H. Yang, Responsive Mater. 2024, 2, e20230030.

[2]

a) C. Ohm, M. Brehmer, R. Zentel, Adv. Mater. 2010, 22, 3366.b) H. Finkelmann, H. J. Kock, W. Gleim, G. Rehage, Makromol. Chem. Rapid Commun. 1984, 5, 287.c) S. Ma, P. Xue, Y. Tang, R. Bi, X. Xu, L. Wang, Q. Li, Responsive Mater. 2024, 2, e20230026. d) J. Gao, Y. Tang, D. Martella, J. Guo, D. S. Wiersma, Q. Li, Responsive Mater. 2023, 1, e20230008.e) J. Liu, Z. P. Song, L. Y. Sun, B. X. Li, Y. Q. Lu, Q. Li, Responsive Mater. 2023, 1, e20230005.

[3]

C. M. Yakacki, M. Saed, D. P. Nair, T. Gong, S. M. Reed, C. N. Bowman, RSC Adv. 2015, 5, 18997.

[4]

R. L. Truby, J. A. Lewis, Nature 2016, 540, 371.

[5]

a) A. Kotikian, R. L. Truby, J. W. Boley, T. J. White, J. A. Lewis, Adv. Mater. 2018, 30, 1706164. b) M. Lopez-Valdeolivas, D. Liu, D. J. Broer, C. Sanchez-Somolinos, Macromol. Rapid Commun. 2018, 39, 1700710.c) C. P. Ambulo, J. J. Burroughs, J. M. Boothby, H. Kim, M. R. Shankar, T. H. Ware, ACS Appl. Mater. Interfaces 2017, 9, 37332.d) M. O. Saed, C. P. Ambulo, H. Kim, R. De, V. Raval, K. Searles, D. A. Siddiqui, J. M. O. Cue, M. C. Stefan, M. R. Shankar, T. H. Ware, Adv. Funct. Mater. 2019, 29, 1806412.

[6]

R. Q. Ma, D. K. Yang, Phys. Rev. E 2000, 61, 1567.

[7]

P. A. Kossyrev, J. Qi, N. V. Priezjev, R. A. Pelcovits, G. P. Crawford, Appl. Phys. Lett. 2002, 81, 2986.

[8]

M. Liu, L. Jin, S. Yang, Y. Wang, C. B. B. Murray, S. Yang, Adv. Mater. 2023, 35, 2208613.

[9]

S. Kumar, J. H. Kim, Y. Shi, Phys. Rev. Lett. 2005, 94, 077803.

[10]

a) Y. Wang, A. Dang, Z. Zhang, R. Yin, Y. Gao, L. Feng, S. Yang, Adv. Mater. 2020, 32, 2004270. b) Y. Zhang, Z. G. Zheng, Q. Li, Responsive Mater. 2024, 2, e20230029.c) S. Y. Chen, Z. H. Zhao, C. H. Li, Q. Li, Responsive Mater. 2023, 1, e20230011.d) S. Huang, Y. L. Huang, Q. Li, Small Struct. 2021, 2, 2100038.

[11]

a) T. Guin, M. J. Settle, B. A. Kowalski, A. D. Auguste, R. V. Beblo, G. W. Reich, T. J. White, Nat. Commun. 2018, 9, 2531. b) K. Hisano, M. Aizawa, M. Ishizu, Y. Kurata, W. Nakano, N. Akamatsu, C. J. Barrett, A. Shishido, Sci. Adv. 2017, 3, e1701610.c) X. Pang, L. Qin, B. Xu, Q. Liu, Y. Yu, Adv. Funct. Mater. 2020, 30, 2002451.d) H.-Q. Wang, Y. Tang, Z.-Y. Huang, F.-Z. Wang, P.-F. Qiu, X. Zhang, C.-H. Li, Q. Li, Angew. Chem., Int. Ed. 2023, 62, e202313728.

[12]

K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, K. Aoki, Langmuir 1988, 4, 1214.

[13]

W. M. Gibbons, P. J. Shannon, S. T. Sun, B. J. Swetlin, Nature 1991, 351, 49.

[14]

M. Schadt, K. Schmitt, V. Kozinkov, V. Chigrinov, Jpn. J. Appl. Phys. 1992, 31, 2155.

[15]

a) K. Ichimura, Y. Akita, H. Akiyama, Y. Hayashi, K. Kudo, Jpn. J. Appl. Phys. 1996, 35, 992.b) K. Ichimura, Y. Akita, H. Akiyama, K. Kudo, Y. Hayashi, Macromolecules 1997, 30, 903.

[16]

a) C. Kim, A. Trajkovska, J. U. Wallace, S. H. Chen, Macromolecules 2006, 39, 3817.b) A. Trajkovska, C. Kim, K. L. Marshall, T. H. Mourey, S. H. Chen, Macromolecules 2006, 39, 6983.c) C. Kim, J. U. Wallace, A. Trajkovska, J. J. Ou, S. H. Chen, Macromolecules 2007, 40, 8924.

[17]

a) S. G. Hahm, S. W. Lee, T. J. Lee, S. A. Cho, B. Chae, Y. M. Jung, S. B. Kim, M. Ree, J. Phys. Chem. B 2008, 112, 4900.b) X. D. Li, Z. X. Zhong, S. H. Lee, G. Ghang, M. H. Lee, Jpn. J. Appl. Phys. 2006, 45, 906.c) M. Kimura, S. Nakata, Y. Makita, Y. Matsuki, A. Kumano, Y. Takeuchi, H. Yokoyama, Jpn. J. Appl. Phys. 2002, 41, 1345.

[18]

L. T. de Haan, C. Sanchez-Somolinos, C. M. Bastiaansen, A. P. Schenning, D. J. Broer, Angew. Chem., Int. Ed. 2012, 51, 12469.

[19]

M. E. McConney, A. Martinez, V. P. Tondiglia, K. M. Lee, D. Langley, I. I. Smalyukh, T. J. White, Adv. Mater. 2013, 25, 5880.

[20]

K. Fuchi, T. H. Ware, P. R. Buskohl, G. W. Reich, R. A. Vaia, T. J. White, J. J. Joo, Soft Matter 2015, 11, 7288.

[21]

T. H. Ware, M. E. McConney, J. J. Wie, V. P. Tondiglia, T. J. White, Science 2015, 347, 982.

[22]

S. K. Ahn, T. H. Ware, K. M. Lee, V. P. Tondiglia, T. J. White, Adv. Funct. Mater. 2016, 26, 5819.

[23]

J. Lall, H. Zappe, R. R. McLeod, Y. Tomita, J. T. Sheridan, I. Pascual Villalobos, Proc. SPIE 2022, 12151, 121510C.

[24]

a) S. A. Shvetsov, A. V. Emelyanenko, M. A. Bugakov, N. I. Boiko, V. Y. Zyryanov, Opt. Mater. Express 2019, 9, 2595.b) G. T. Carroll, K. M. Lee, M. E. McConney, H. J. Hall, J. Mater. Chem. C 2023, 11, 2177.

[25]

a) H. K. Bisoyi, Q. Li, Chem. Rev. 2022, 122, 4887.b) H. K. Bisoyi, Q. Li, Prog. Mater. Sci. 2019, 104, 1.c) Z.-G. Zheng, C.-L. Yuan, W. Hu, H. K. Bisoyi, M.-J. Tang, Z. Liu, P.-Z. Sun, W.-Q. Yang, X.-Q. Wang, D. Shen, Y. N. Li, F. F. Ye, Y.-Q. Lu, G. Q. Li, Q. Li, Adv. Mater. 2017, 29, 1703165.d) Q. Li, in Nanoscience with Liquid Crystals: From Self-Organized Nanostructures to Applications (Ed: Q. Li, Ed.), Springer, Heidelberg 2014 Ch.1.

[26]

a) H. Yu, T. Iyoda, T. Ikeda, J. Am. Chem. Soc. 2006, 128, 11010.b) H. Yu, Prog. Polym. Sci. 2014, 39, 781.

[27]

Y. L. Yu, M. Nakano, T. Ikeda, Nature 2003, 425, 145.

[28]

Y. Li, O. Rios, J. K. Keum, J. Chen, M. R. Kessler, ACS Appl. Mater. Interfaces 2016, 8, 15750.

[29]

H. Tsunoda, K. Kawasaki, T. Ube, T. Ikeda, Mol. Cryst. Liquid Cryst. 2018, 662, 61.

[30]

T. Ube, H. Tsunoda, K. Kawasaki, T. Ikeda, Adv. Opt. Mater. 2021, 9, 2100053.

[31]

T. H. Ware, T. J. White, Polym. Chem. 2015, 6, 4835.

[32]

A. Nasrollahi, V. Kumar, M.-H. Lee, S.-W. Kang, H.-S. Park, H. Lim, K. Chan Oh, J. J. Lyu, ACS Appl. Mater. Interfaces 2019, 11, 15141.

[33]

M. Mizusaki, Liq. Cryst. 2018, 46, 640.

[34]

J. Zhou, J. Seo, Y. Wu, C. P. Ambulo, Z. M. Marsh, K. N. Lee, N. P. Godman, Z. A. Page, Adv. Funct. Mater. 2023, 33, 2308828.

[35]

Y. He, J. Li, J. Li, C. Zhu, J. Guo, ACS Appl. Polym. Mater. 2019, 1, 746.

[36]

A. Nasrollahi, V. Kumar, M.-H. Lee, S.-W. Kang, J. Mater. Chem. C 2020, 8, 1722.

[37]

S. Minami, R. Ashizawa, M. Kondo, N. Kawatsuki, Mol. Cryst. Liquid Cryst. 2015, 617, 40.

[38]

N. Kawatsuki, R. Fujii, Y. Fujioka, S. Minami, M. Kondo, Langmuir 2017, 33, 2427.

[39]

A. Concellon, P. Romero, M. Marcos, J. Barbera, C. Sanchez-Somolinos, M. Mizobata, T. Ogoshi, J. L. Serrano, J. Del Barrio, J. Org. Chem. 2020, 85, 8944.

[40]

X. Chen, L. Han, J. Hou, Y. Zhao, Macromol. Chem. Phys. 2023, 224, 2300191.

[41]

Y. Liu, J. Sang, S. He, X. Gong, H. Xu, J. Sun, L. Ren, S. Zhao, X.-D. Li, M.-H. Lee, Opt. Mater. Express 2019, 9, 3700.

[42]

Y. Xu, X. Zhang, Z. Song, X. Chen, Y. Huang, J. Wang, B. Li, S. Huang, Q. Li, Angew. Chem., Int. Ed. 2024, 63, e202319698.

[43]

R. He, P. Wen, Y. Ye, E. Oh, S.-W. Kang, S. H. Lee, M.-H. Lee, Liq. Cryst. 2019, 47, 819.

[44]

D. C. Rich, E. K. Sichel, Abstr. Pap. Am. Chem. S 1996, 211, 307.

[45]

a) Y.-J. Jeon, J.-Y. Hwang, D.-S. Seo, S.-H. Nam, J.-I. Han, Mol. Cryst. Liquid Cryst. 2004, 412, 269.b) J. Y. Hwang, D. S. Seo, Jpn. J. Appl. Phys. 2001, 40, 4160.c) S. K. Park, U. S. Jung, S. B. Kwon, M. Yi, T. Ahn, J. S. Kim, Y. Kurioz, Y. Reznikov, J. Soc. Inf. Disp. 2012, 18, 199.

[46]

Y. Song, L. Yuan, Z. Wang, S. Yang, Polym. Adv. Technol. 2019, 30, 1243.

[47]

a) V. Kumar, A. Nasrollahi, H.-S. Park, S. T. Shin, M.-H. Lee, S.-W. Kang, J. Mol. Liq. 2021, 324, 114778.b) V. Kumar, A. Nasrollahi, V. K. Baliyan, H.-S. Park, M.-H. Lee, S.-W. Kang, Opt. Mater. Express 2018, 8, 2366.

[48]

F. Tong, J. Wang, F. Zheng, Mater. Today Commun. 2021, 26, 100419.

[49]

M. Hasegawa, Jpn. J. Appl. Phys. 1999, 38, 255.

[50]

J. Xiong, Q. Yang, Y. Li, S. T. Wu, Light Sci. Appl. 2022, 11, 54.

[51]

J. Li, H. K. Bisoyi, J. Tian, J. Guo, Q. Li, Adv. Mater. 2019, 31, 1807751.

[52]

C. Meng, M. Tseng, S. Tang, H. Kwok, Opt. Lett. 2018, 43, 899.

[53]

S. Pan, J. Y. Ho, V. G. Chigrinov, H. S. Kwok, ACS Appl. Mater. Interfaces 2018, 10, 9032.

[54]

S. Liu, S. Alfarhan, W. Wang, S. Feng, Y. Zhu, L. Liu, K. Song, S. Yang, K. Jin, X. Chen, Adv. Opt. Mater. 2023, 11, 2301364.

[55]

K. Yin, J. Xiong, Z. He, S. T. Wu, ACS Omega 2020, 5, 31485.

[56]

R. S. Zola, H. K. Bisoyi, H. Wang, A. M. Urbas, T. J. Bunning, Q. Li, Adv. Mater. 2018, 31, 1806172.

[57]

Y. Shi, Y. J. Liu, F. Song, V. G. Chigrinov, H.-S. Kwok, M. Hu, D. Luo, X. W. Sun, Opt. Express 2018, 26, 7683.

[58]

A. I. Kovalchuk, Y. L. Kobzar, I. M. Tkachenko, Y. I. Kurioz, O. G. Tereshchenko, O. V. Shekera, V. G. Nazarenko, V. V. Shevchenko, ACS Appl. Polym. Mater. 2019, 2, 455.

[59]

A. Ryabchun, O. Sakhno, J. Stumpe, A. Bobrovsky, Adv. Opt. Mater. 2017, 5, 1700314.

[60]

B.-Y. Huang, T.-H. Lin, T.-Y. Jhuang, C.-T. Kuo, Polymers 2019, 11, 1448.

[61]

V. Chigrinov, Q. Guo, A. Kudreyko, Crystals 2021, 11, 84.

[62]

Y. Liu, B. Xu, S. Sun, J. Wei, L. Wu, Y. Yu, Adv. Mater. 2017, 29, 1604792.

[63]

Y. L. Huang, Y. Y. Xu, H. K. Bisoyi, Z. C. Liu, J. Y. Wang, Y. Tao, T. Yang, S. Huang, H. Yang, Q. Li, Adv. Mater. 2023, 35, 2304378.

[64]

Z. S. Davidson, H. Shahsavan, A. Aghakhani, Y. Guo, L. Hines, Y. Xia, S. Yang, M. Sitti, Sci. Adv. 2019, 5, eaay0855.

[65]

L. T. de Haan, V. Gimenez-Pinto, A. Konya, T. S. Nguyen, J. M. N. Verjans, C. Sánchez-Somolinos, J. V. Selinger, R. L. B. Selinger, D. J. Broer, A. P. H. J. Schenning, Adv. Funct. Mater. 2013, 24, 1251.

[66]

O. M. Wani, H. Zeng, P. Wasylczyk, A. Priimagi, Adv. Opt. Mater. 2018, 6, 1700949.

[67]

J. Pan, J. Qian, L. Ma, Z. Wang, R. Zheng, N. Wang, B. Li, Y. Lu, Chin. Opt. Lett. 2023, 21, 041603.

[68]

K. M. Lee, N. V. Tabiryan, T. J. Bunning, T. J. White, J. Mater. Chem. 2012, 22, 691.

[69]

M. Lahikainen, H. Zeng, A. Priimagi, Nat. Commun. 2018, 9, 4148.

RIGHTS & PERMISSIONS

2024 The Author(s). Responsive Materials published by John Wiley & Sons Australia, Ltd on behalf of Southeast University.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/