Challenges and opportunities in piezoelectric polymers: Effect of oriented amorphous fraction in ferroelectric semicrystalline polymers

Guanchun Rui , Elshad Allahyarov , Zhiwen Zhu , Yanfei Huang , Thumawadee Wongwirat , Qin Zou , Philip L. Taylor , Lei Zhu

Responsive Materials ›› 2024, Vol. 2 ›› Issue (3) : e20240002

PDF
Responsive Materials ›› 2024, Vol. 2 ›› Issue (3) : e20240002 DOI: 10.1002/rpm.20240002
PERSPECTIVE

Challenges and opportunities in piezoelectric polymers: Effect of oriented amorphous fraction in ferroelectric semicrystalline polymers

Author information +
History +
PDF

Abstract

Despite extensive research on piezoelectric polymers since the discovery of piezoelectric poly(vinylidene fluoride) (PVDF) in 1969, the fundamental physics of polymer piezoelectricity has remained elusive. Based on the classic principle of piezoelectricity, polymer piezoelectricity should originate from the polar crystalline phase. Surprisingly, the crystal contribution to the piezoelectric strain coefficient d31 is determined to be less than 10%, primarily owing to the difficulty in changing the molecular bond lengths and bond angles. Instead, >85% contribution is from Poisson’s ratio, which is closely related to the oriented amorphous fraction (OAF) in uniaxially stretched films of semicrystalline ferroelectric (FE) polymers. In this perspective, the semicrystalline structure–piezoelectric property relationship is revealed using PVDF-based FE polymers as a model system. In melt-processed FE polymers, the OAF is often present and links the crystalline lamellae to the isotropic amorphous fraction. Molecular dynamics simulations demonstrate that the electrostrictive conformation transformation of the OAF chains induces a polarization change upon the application of either a stress (the direct piezoelectric effect) or an electric field (the converse piezoelectric effect). Meanwhile, relaxor-like secondary crystals in OAF (SCOAF), which are favored to grow in the extended-chain crystal (ECC) structure, can further enhance the piezoelectricity. However, the ECC structure is difficult to achieve in PVDF homopolymers without high-pressure crystallization. We have discovered that high-power ultrasonication can effectively induce SCOAF in PVDF homopolymers to improve its piezoelectric performance. Finally, we envision that the electrostrictive OAF mechanism should also be applicable for other FE polymers such as odd-numbered nylons and piezoelectric biopolymers.

Keywords

electrostriction / ferroelectric polymers / oriented amorphous fraction / piezoelectricity / poly(vinylidene fluoride)

Cite this article

Download citation ▾
Guanchun Rui, Elshad Allahyarov, Zhiwen Zhu, Yanfei Huang, Thumawadee Wongwirat, Qin Zou, Philip L. Taylor, Lei Zhu. Challenges and opportunities in piezoelectric polymers: Effect of oriented amorphous fraction in ferroelectric semicrystalline polymers. Responsive Materials, 2024, 2(3): e20240002 DOI:10.1002/rpm.20240002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. K. P Scaife, Principles of Dielectrics, Oxford University Press, New York 1989.

[2]

K.-C. Kao, Dielectric Phenomena in Solids: With Emphasis on Physical Concepts of Electronic Processes, Elsevier Academic Press, Boston 2004.

[3]

Q. M. Zhang, C. Huang, F. Xia, J. Su, in Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Vol. PM136 (Ed: Y. Bar-Cohen), 2nd ed., SPIE Press 2004, Chapter 4, pp. 89–139.

[4]

Z.-G. Ye, Ed. Handbook of Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications, Woodhead Pub. and Maney Pub., Cambridge, U.K. 2008.

[5]

L. Zhu, J. Phys. Chem. Lett. 2014, 5, 3677.

[6]

E. Baer, L. Zhu, Macromolecules 2017, 50, 2239.

[7]

J. Wei, L. Zhu, Prog. Polym. Sci. 2020, 106, 101254.

[8]

Y. Liu, Q. Wang, Adv. Sci. 2020, 7, 1902468.

[9]

X. Qian, X. Chen, L. Zhu, Q. Zhang, Science 2023, 380, eadg0902.

[10]

L. Zhang, S. Li, Z. Zhu, G. Rui, B. Du, D. Chen, Y. Huang, L. Zhu, Adv. Funct. Mater. 2023, 33, 2301302.

[11]

W. Heywang, K. Lubitz, W. Wersing, Eds. Piezoelectricity: Evolution and Future of a Technology, Springer, Berlin 2008.

[12]

A. Janshoff, H. J. Galla, C. Steinem, Angew. Chem., Int. Ed. 2000, 39, 4004.

[13]

K. A. Marx, Biomacromolecules 2003, 4, 1099.

[14]

T. Furukawa, N. Seo, Jpn. J. Appl. Phys. 1990, 29, 675.

[15]

E. Fukada, in Ferroelectric Polymers: Chemistry, Physics, and Applications (Ed: H. S. Nalwa), Marcel Dekker, New York 1995, Chapter 9, pp. 393–434.

[16]

E. Fukada, Biorheology 1996, 33, 95.

[17]

S. Tasaka, in Ferroelectric Polymers: Chemistry, Physics, and Applications (Ed: H. S. Nalwa), Dekker, New York 1995, Chapter 7, pp. 325–352.

[18]

J. S. Harrison, Z. Ounaies, in Encyclopedia of Polymer Science and Technology, Vol. 3, Wiley, New York 2002, pp. 474–498.

[19]

K. Mazur, in Ferroelectric Polymers: Chemistry, Physics, and Applications (Ed: H. S. Nalwa, Ed.), Marcel Dekker, New York 1995, Chapter 11, pp. 539–610.

[20]

S. Mishra, L. Unnikrishnan, S. K. Nayak, S. Mohanty, Macromol. Mater. Eng. 2019, 304, 1800463.

[21]

E. K. Akdogan, M. Allahverdi, A. Safari, IEEE Trans. Ultrason. Ferroelect. Freq. Control 2005, 52, 746.

[22]

H. Kawai, Jpn. J. Appl. Phys. 1969, 8, 975.

[23]

G. T. Davis, J. E. McKinney, M. G. Broadhurst, S. C. Roth, J. Appl. Phys. 1978, 49, 4998.

[24]

H. Kawai, Oyo Buturi 1970, 39, 413.

[25]

S. C. Mathur, J. I. Scheinbeim, B. A. Newman, J. Appl. Phys. 1984, 56, 2419.

[26]

E. Fukada, IEEE Trans. Ultrason. Ferroelect. Freq. Control 2000, 47, 1277.

[27]

F. Li, L. Jin, Z. Xu, S. Zhang, Appl. Phys. Rev. 2014, 1, 011103.

[28]

T. R. Shrout, S. Zhang, J. Electroceram. 2007, 19, 113.

[29]

S. Zhang, F. Li, J. Appl. Phys. 2012, 111, 031301.

[30]

R. G. Kepler, in Ferroelectric Polymers: Chemistry, Physics, and Applications (Ed: H. S. Nalwa), Marcel Dekker, New York 1995, Chapter 3, pp. 183–232.

[31]

K. S. Ramadan, D. Sameoto, S. Evoy, Smart Mater. Struct. 2014, 23, 033001.

[32]

F. S. Foster, E. A. Harasiewicz, M. D. Sherar, IEEE. Trans. Ultrason. Ferroelect. Freq. Control 2000, 47, 1363.

[33]

L. F. Brown, IEEE Trans. Ultrason. Ferroelect. Freq. Control 2000, 47, 1377.

[34]

S. A. Pullano, C. D. Critello, M. G. Bianco, M. Menniti, A. S. Fiorillo, IEEE Trans. Ultrason. Ferroelect. Freq. Control 2021, 68, 2324.

[35]

B. Jaffe, W. R. Cook, H. L. Jaffe, Piezoelectric Ceramics, Academic Press, London 1971.

[36]

H. Fu, R. E. Cohen, Nature 2000, 403, 281.

[37]

R. Guo, L. E. Cross, S. E. Park, B. Noheda, D. E. Cox, G. Shirane, Phys. Rev. Lett. 2000, 84, 5423.

[38]

Z. Kutnjak, J. Petzelt, R. Blinc, Nature 2006, 441, 956.

[39]

M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H.-K. Mao, R. J. Hemley, Y. Ren, P. Liermann, Z. Wu, Nature 2008, 451, 545.

[40]

N. Zhang, H. Yokota, A. M. Glazer, D. A. Keen, S. Gorfman, P. A. Thomas, W. Ren, Z. G. Ye, IUCrJ 2018, 5, 73.

[41]

T. Soulestin, V. Ladmiral, F. D. Dos Santos, B. Ameduri, Prog. Polym. Sci. 2017, 72, 16.

[42]

I. Chae, C. K. Jeong, Z. Ounaies, S. H. Kim, ACS Appl. Bio Mater. 2018, 1, 936.

[43]

J. Jacob, N. More, K. Kalia, G. Kapusetti, Inflamm. Regen. 2018, 38, 2.

[44]

M. T. Chorsi, E. J. Curry, H. T. Chorsi, R. Das, J. Baroody, P. K. Purohit, H. Ilies, T. D. Nguyen, Adv. Mater. 2019, 31, 1802084.

[45]

J. Li, Y. Long, F. Yang, X. D. Wang, Curr. Opin. Solid State Mater. Sci. 2020, 24, 100806.

[46]

A. Farahani, A. Zarei-Hanzaki, H. R. Abedi, L. Tayebi, E. Mostafavi, J. Funct. Biomater. 2021, 12, 71.

[47]

N. A. Kamel, Biophys. Rev. 2022, 14, 717.

[48]

M. Ali, M. J. Bathaei, E. Istif, S. N. H. Karimi, L. Beker, Adv. Healthc. Mater. 2023, 12, 2300318.

[49]

T. Liu, Y. Wang, M. Hong, J. Venezuela, W. Shi, M. Dargusch, Nano Today 2023, 52, 101945.

[50]

C. Wu, A. Wang, W. Ding, H. Guo, Z. L. Wang, Adv. Energy Mater. 2019, 9, 1802906.

[51]

C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, L. Lin, Nano Lett. 2010, 10, 726.

[52]

J. Pu, X. Yan, Y. Jiang, C. Chang, L. Lin, Sens. Actuator A: Phys. 2010, 164, 131.

[53]

E. J. Curry, K. Ke, M. T. Chorsi, K. S. Wrobel, A. N. Miller, A. Patel, I. Kim, J. Feng, L. Yue, Q. Wu, C. L. Kuo, K. W. H. Lo, C. T. Laurencin, H. Ilies, P. K. Purohit, T. D. Nguyen, Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 909.

[54]

E. J. Curry, T. T. Le, R. Das, K. Ke, E. M. Santorella, D. Paul, M. T. Chorsi, K. T. M. Tran, J. Baroody, E. R. Borges, B. Ko, A. Golabchi, X. Xin, D. Rowe, L. Yue, J. Feng, M. D Morales-Acosta, Q. Wu, I.-P. Chen, X. T. Cui, J. Pachter, T. D. Nguyen, Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 214.

[55]

S. N. Gorodzha, A. R. Muslimov, D. S. Syromotina, A. S. Timin, N. Y. Tcvetkov, K. V. Lepik, A. V. Petrova, M. A. Surmeneva, D. A. Gorin, G. B. Sukhorukov, R. A. Surmenev, Colloid. Surface. B 2017, 160, 48.

[56]

J. F. G. Rabolt L, Chase D. B., Noda I., Sobieski B., U.S. patent US20200093966A1, 2020.

[57]

D. Farrar, K. Ren, D. Cheng, S. Kim, W. Moon, W. L. Wilson, J. E. West, S. M. Yu, Adv. Mater. 2011, 23, 3954.

[58]

J. Chang, M. Domnner, C. Chang, L. Lin, Nano Energy 2012, 1, 356.

[59]

C. Wan, C. R. Bowen, J. Mater. Chem. A 2017, 5, 3091.

[60]

B. Azimi, M. Milazzo, A. Lazzeri, S. Berrettini, M. J. Uddin, Z. Qin, M. J. Buehler, S. Danti, Adv. Healthc. Mater. 2020, 9, 1901287.

[61]

K. Kapat, Q. T. H. Shubhra, M. Zhou, S. Leeuwenburgh, Adv. Funct. Mater. 2020, 30, 1909045.

[62]

S. Yu, Y. Tai, J. Milam-Guerrero, J. Nam, N. V. Myung, Nano Energy 2022, 97, 107174.

[63]

T. Xing, A. He, Z. Huang, Y. Luo, Y. Zhang, M. Wang, Z. Shi, G. Ke, J. Bai, S. Zhao, F. Chen, W. Xu, Chem. Eng. J. 2023, 474, 145534.

[64]

L. E. Shlapakova, M. A. Surmeneva, A. L. Kholkin, R. A. Surmenev, Mater. Today Bio. 2024, 25, 100950.

[65]

K. H. Meyer, H. Mark, Eur. J. Inorg. Chem. 1928, 61, 593.

[66]

K. H. Storks, J. Am. Chem. Soc. 1938, 60, 1753.

[67]

A. Keller, Philos. Mag. A 1957, 2, 1171.

[68]

E. W. Fischer, Z. Naturforsch. 1957, 12, 753.

[69]

P. H. Till, J. Polym. Sci. 1957, 24, 301.

[70]

T. Williams, D. J. Blundell, A. Keller, I. M. Ward, J. Polym. Sci. Part A-2: Polym. Phys. 1968, 6, 1613.

[71]

P. H. Geil, Polymer Single Crystals, Interscience Publishers, New York 1963.

[72]

B. Wunderlich, Macromolecular Physics, Vol. 1: Crystal Structure, Morphology, and Defects, Academic Press, New York, 1973.

[73]

W. B. Hu, Phys. Rep. 2018, 747, 1.

[74]

B. Wunderlich, Prog. Polym. Sci. 2003, 28, 383.

[75]

C. Schick, Anal. Bioanal. Chem. 2009, 395, 1589.

[76]

Y. Fu, W. R. Busing, Y. M. Jin, K. A. Affholter, B. Wunderlich, Macromolecules 1993, 26, 2187.

[77]

Y. Fu, B. Annis, A. Boller, Y. M. Jin, B. Wunderlich, J. Polym. Sci., Part B: Polym. Phys. 1994, 32, 2289.

[78]

Y. Fu, W. R. Busing, Y. M. Jin, K. A. Affholter, B. Wunderlich, Macromol. Chem. Phys. 1994, 195, 803.

[79]

M. G. Broadhurst, G. T. Davis, Ferroelectrics 1984, 60, 3.

[80]

T. Furukawa, H. Kodama, H. Ishii, S. Kojima, T. Nakajima, W. C. Gan, T. S. Velayutham, W. H. A. Majid, Polymer 2023, 283, 126235.

[81]

Q. M. Zhang, H. Wang, N. Kim, L. E. Cross, J. Appl. Phys. 1994, 75, 454.

[82]

D. Damjanovic, Rep. Prog. Phys. 1998, 61, 1267.

[83]

V. S. Bystrov, E. V. Paramonova, I. K. Bdikin, A. V. Bystrova, R. C. Pullar, A. L. Kholkin, J. Mol. Model. 2013, 19, 3591.

[84]

K. Tashiro, M. Kobayashi, H. Tadokoro, E. Fukada, Macromolecules 1980, 13, 691.

[85]

K. Tashiro, H. Yamamoto, S. Kummara, T. Takahama, K. Aoyama, H. Sekiguchi, H. Iwamoto, Macromolecules 2021, 54, 2334.

[86]

T. Wongwirat, Z. Zhu, G. Rui, R. Li, P. Laoratanakul, H. He, H. Manuspiya, L. Zhu, Macromolecules 2020, 53, 10942.

[87]

A. Strachan, W. A. Goddard, Appl. Phys. Lett. 2005, 86, 083103.

[88]

Y. Liu, H. Aziguli, B. Zhang, W. Xu, W. Lu, J. Bernholc, Q. Wang, Nature 2018, 562, 96.

[89]

K. Tashiro, in Ferroelectric Polymers: Chemistry, Physics, and Applications (Ed: H. S. Nalwa), Marcel Dekker, New York 1995, Chapter 2, pp. 63–182.

[90]

K. Tashiro, R. Tanaka, Polymer 2006, 47, 5433.

[91]

G. Rui, Y. Huang, X. Chen, R. Li, D. Wang, T. Miyoshi, L. Zhu, J. Mater. Chem. C 2021, 9, 894.

[92]

Y. Liu, B. Zhang, A. Haibibu, W. Xu, Z. Han, W. Lu, J. Bernholc, Q. Wang, J. Phys. Chem. C 2019, 123, 8727.

[93]

Y. Liu, Z. Han, W. Xu, A. Haibibu, Q. Wang, Macromolecules 2019, 52, 6741.

[94]

Y. Liu, X. Chen, Z. Han, H. Zhou, Q. Wang, Appl. Phys. Rev. 2022, 9, 031306.

[95]

Y. Wada, R. Hayakawa, Jpn. J. Appl. Phys. 1976, 15, 2041.

[96]

M. G. Broadhurst, G. T. Davis, J. E. Mckinney, R. E. Collins, J. Appl. Phys. 1978, 49, 4992.

[97]

Y. Wada, R. Hayakawa, Ferroelectrics 1981, 32, 115.

[98]

K. Tashiro, H. Tadokoro, Macromolecules 1983, 16, 961.

[99]

Y. Wada, Ferroelectrics 1984, 57, 343.

[100]

T. Furukawa, J. X. Wen, K. Suzuki, Y. Takashina, M. Date, J. Appl. Phys. 1984, 56, 829.

[101]

H. Dvey-Aharon, P. L. Taylor, Ferroelectrics 1981, 33, 103.

[102]

T. R. Venkatesan, M. Wübbenhorst, B. Ploss, X. Qiu, T. Nakajima, T. Furukawa, R. Gerhard, IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1446.

[103]

P. Harnischfeger, B. J. Jungnickel, Ferroelectrics 1990, 109, 279.

[104]

H. Sussner, Phys. Lett. 1976, 58, 426.

[105]

S. Tasaka, S. Miyata, Ferroelectrics 1981, 32, 17.

[106]

I. D. Richardson, I. M. Ward, J. Polym. Sci. Polym. Phys. Ed. 1978, 16, 667.

[107]

I. M. Ward, Mechanical Properties of Solid Polymers, 2nd ed., Wiley, Chichester 1983.

[108]

H. S. Nalwa, in Ferroelectric Polymers: Chemistry, Physics, and Applications (Ed: H. S. Nalwa), Marcel Dekker, New York 1995, Chapter 6, pp. 281–323.

[109]

I. Katsouras, K. Asadi, M. Li, T. B. van Driel, K. S. Kjaer, D. Zhao, T. Lenz, Y. Gu, P. M. Blom, D. Damjanovic, M. M. Nielsen, D. M. de Leeuw, Nat. Mater. 2016, 15, 78.

[110]

Z. Zhu, G. Rui, Q. Li, E. Allahyarov, R. Li, T. Soulestin, F. Domingues Dos Santos, H. He, P. Taylor, L. Zhu, Matter 2021, 4, 3696.

[111]

Y. Huang, G. Rui, Q. Li, E. Allahyarov, R. Li, M. Fukuto, G.-J. Zhong, J.-Z. Xu, Z.-M. Li, P. L. Taylor, L. Zhu, Nat. Commun. 2021, 12, 675.

[112]

G. Rui, E. Allahyarov, J. Thomas, P. Taylor, L. Zhu, Macromolecules 2022, 55, 9705.

[113]

T. Furukawa, IEEE Trans. Electr. Insul. 1989, 24, 375.

[114]

X. Chen, H. Qin, X. Qian, W. Zhu, B. Li, B. Zhang, W. Lu, R. Li, S. Zhang, L. Zhu, F. Dos Santos, J. Bernholc, Q. Zhang, Science 2022, 375, 1418.

[115]

L. Yang, J. Ho, E. Allahyarov, R. Mu, L. Zhu, ACS Appl. Mater. Interfaces 2015, 7, 19894.

[116]

X. Cai, T. Lei, D. Sun, L. Lin, RSC Adv. 2017, 7, 15382.

[117]

Y. Li, J. Ho, J. Wang, Z.-M. Li, G.-J. Zhong, L. Zhu, ACS Appl. Mater. Interfaces 2016, 8, 455.

[118]

S. M. Nakhmanson, M. B. Nardelli, J. Bernholc, Phys. Rev. Lett. 2004, 92, 115504.

[119]

S. M. Nakhmanson, M. B. Nardelli, J. Bernholc, Phys. Rev. B 2005, 72, 115210.

[120]

A. Itoh, Y. Takahashi, T. Furukawa, H. Yajima, Polym. J. 2014, 46, 207.

[121]

A. Gradys, P. Sajkiewicz, S. Adamovsky, A. Minakov, C. Schick, Thermochim. Acta 2007, 461, 153.

[122]

N. D. Govinna Ph.D. thesis, Tufts University, Cambridge, MA 2019.

[123]

Z. Zhu, G. Rui, R. Li, H. He, L. Zhu, Macromolecules 2021, 54, 9879.

[124]

H. Ohigashi, K. Omote, T. Gomyo, Appl. Phys. Lett. 1995, 66, 3281.

[125]

K. Omote, H. Ohigashi, K. Koga, J. Appl. Phys. 1997, 81, 2760.

[126]

M. V. Fernandez, A. Suzuki, A. Chiba, Macromolecules 1987, 20, 1806.

[127]

T. Hattori, M. Hikosaka, H. Ohigashi, Polymer 1996, 37, 85.

[128]

H. Ohigashi, K. Omote, H. Abe, K. Koga, J. Phys. Soc. Jpn. 1999, 68, 1824.

[129]

A. A. Bokov, Z. G. Ye, J. Mater. Sci. 2006, 41, 31.

[130]

V. V. Shvartsman, D. C. Lupascu, J. Am. Ceram. Soc. 2012, 95, 1.

[131]

Q. M. Zhang, V. Bharti, X. Zhao, Science 1998, 280, 2101.

[132]

L. Yang, X. Li, E. Allahyarov, P. L. Taylor, Q. M. Zhang, L. Zhu, Polymer 2013, 54, 1709.

[133]

S. Castagnet, J. L. Gacougnolle, P. Dang, Mater. Sci. Eng. A-Struct. 2000, 276, 152.

[134]

M. Neidhöfer, F. Beaume, L. Ibos, A. Bernès, C. Lacabanne, Polymer 2004, 45, 1679.

[135]

M. A. Barique, H. Ohigashi, Polymer 2001, 42, 4981.

[136]

Y. Li, S. Tang, M.-W. Pan, L. Zhu, G.-J. Zhong, Z.-M. Li, Macromolecules 2015, 48, 8565.

[137]

A. J. Lovinger, T. Furukawa, G. T. Davis, M. G. Broadhurst, Polymer 1983, 24, 1233.

[138]

T. Hattori, T. Watanabe, S. Akama, M. Hikosaka, H. Ohigashi, Polymer 1997, 38, 3505.

[139]

T. Furukawa, Adv. Colloid Interface Sci. 1997, 71-2, 183.

[140]

T. Hattori, M. Kanaoka, H. Ohigashi, J. Appl. Phys. 1996, 79, 2016.

[141]

G. Rui, E. Allahyarov, R. Li, P. L. Taylor, L. Zhu, Mater. Horizons 2022, 9, 1992.

[142]

G. Rui, E. Allahyarov, H. Zhang, R. Li, S. Zhang, P. Taylor, L. Zhu, Nano Energy 2023, 113, 108590.

[143]

Z. Zhang, L. Zhu, in Organic Ferroelectric Materials and Applications (Ed: K. Asadi), Woodhead Publishing 2022, Chapter 6, pp. 153–183.

[144]

Y. Takase, J. W. Lee, J. I. Scheinbeim, B. A. Newman, Macromolecules 1991, 24, 6644.

[145]

S. L. Wu, J. I. Scheinbeim, B. A. Newman, J. Polym, Sci., Part B: Polym. Chem. 1999, 37, 2737.

[146]

S. C. Mathur, A. Sen, B. A. Newman, J. I. Scheinbeim, J. Mater. Sci. 1988, 23, 977.

[147]

Z. Zhang, M. H. Litt, L. Zhu, Macromolecules 2017, 50, 9360.

[148]

W. Yan, G. Noel, G. Loke, E. Meiklejohn, T. Khudiyev, J. Marion, G. Rui, J. Lin, J. Cherston, A. Sahasrabudhe, J. Wilbert, I. Wicaksono, R. Hoyt, A. Missakian, L. Zhu, C. Ma, J. Joannopoulos, Y. Fink, Nature 2022, 603, 616.

[149]

S. Ma, P. Xue, Y. Tang, R. Bi, X. Xu, L. Wang, Q. Li, Resp. Mater. 2024, 2, e29.

[150]

Q. Li, Ed. Nanomaterials for Sustainable Energy, Springer, Heidelberg 2016.

[151]

Z. Wang, Y. Tai, J. Nam, Y. Yin, Chem. Mater. 2023, 35, 6845.

[152]

P. Martins, A. C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 2014, 39, 683.

RIGHTS & PERMISSIONS

2024 The Authors. Responsive Materials published by John Wiley & Sons Australia, Ltd on behalf of Southeast University.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/