Recent advances in photochromic smart windows based on inorganic materials

Weihao Meng , Jingxia Wang , Lei Jiang

Responsive Materials ›› 2024, Vol. 2 ›› Issue (3) : e20240001

PDF
Responsive Materials ›› 2024, Vol. 2 ›› Issue (3) : e20240001 DOI: 10.1002/rpm.20240001
REVIEW ARTICLE

Recent advances in photochromic smart windows based on inorganic materials

Author information +
History +
PDF

Abstract

The emergence of smart windows has been a pivotal innovation in the field of energy efficiency and carbon emission reduction, sparking considerable interest worldwide. This review consolidates the latest research developments in inorganic-based photochromic materials for smart windows applications, encompassing the design of device architectures, and their implementation in enhancing energy conservation, augmenting comfort levels, and optimizing indoor environmental control. Finally, this review culminates in an insightful analysis of the challenges and constraints in the existing research landscapes, which illuminates guidance for the directions and perspectives of future research.

Keywords

inorganic material / photochromic / smart window / tungsten trioixde

Cite this article

Download citation ▾
Weihao Meng, Jingxia Wang, Lei Jiang. Recent advances in photochromic smart windows based on inorganic materials. Responsive Materials, 2024, 2(3): e20240001 DOI:10.1002/rpm.20240001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

United Nations, Global Status Report for Buildings and Construction 2021, Vol. 59, United Nations Environ Program 2021, https://globalabc.org/resources/publications/2021-global-status-report-buildings-and-construction

[2]

U.S. Energy Information Administration, Office of Energy Consumption and Efficiency Statistics, Forms EIA-457A, D, E, F, G of the 2020 Residential Energy Consumption Survey. https://www.eia.gov/consumption/residential/data/2020/index.php?view=consumption

[3]

H. Khandelwal, A. P. H. J. Schenning, M. G. Debije, Adv. Energy Mater. 2017, 7, 1602209.

[4]

Y. Zhou, F. Fan, Y. P. Liu, S. S. Zhao, Q. Xu, S. C. Wang, D. Luo, Y. Long, Nano Energy 2021, 90, 106613.

[5]

J. Chai, J. Fan, Adv. Energy Mater. 2022, 13, 2202932.

[6]

Y. J. Ke, J. W. Chen, C. J. Lin, S. C. Wang, Y. Zhou, J. Yin, P. S. Lee, Y. Long, Adv. Energy Mater. 2019, 9, 1902066.

[7]

M. Shrestha, G. K. Lau, A. K. Bastola, Z. Lu, A. Asundi, E. H. T. Teo, Appl. Phys. Rev. 2022, 9, 031304.

[8]

M. N. Mustafa, M. A. A. Mohd Abdah, A. Numan, A. Moreno-Rangel, A. Radwan, M. Khalid, Renew. Sust. Energy Rev. 2023, 181, 113355.

[9]

S. Wu, H. Sun, M. Duan, H. Mao, Y. Wu, H. Zhao, B. Lin, Cell Rep. Phys. Sci. 2023, 4, 101370.

[10]

T. Ghosh, S. Kandpal, C. Rani, A. Chaudhary, R. Kumar, Adv. Opt. Mater. 2023, 11, 2203126.

[11]

K. Thummavichai, Y. D. Xia, Y. Q. Zhu, Prog. Mater. Sci. 2017, 88, 281.

[12]

Z. Zhang, L. Zhang, Y. Zhou, Y. Cui, Z. Chen, Y. Liu, J. Li, Y. Long, Y. Gao, Chem. Rev. 2023, 123, 7025.

[13]

Y. Cui, Y. Ke, C. Liu, Z. Chen, N. Wang, L. Zhang, Y. Zhou, S. Wang, Y. Gao, Y. Long, Joule 2018, 2, 1707.

[14]

Y. Ke, S. Wang, G. Liu, M. Li, T. J. White, Y. Long, Small 2018, 14, 1802025.

[15]

Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, C. Cao, Nano Energy 2012, 1, 221.

[16]

S. Liu, Y. Du, R. Zhang, H. He, A. Pan, T. C. Ho, Y. Zhu, Y. Li, H. L. Yip, A. K. Y. Jen, C. Y. Tso, Adv. Mater. 2023, 2306423.

[17]

L. Wang, H. K. Bisoyi, Z. Zheng, K. G Gutierrez-Cuevas, G. Singh, S. Kumar, T. J. Bunning, Q. Li, Mater. Today 2017, 20, 230.

[18]

H. Sentjens, A. J. J. Kragt, J. Lub, M. D. T. Claessen, V. E. Buurman, J. Schreppers, H. A. Gongriep, A. Schenning, Macromolecules 2023, 56, 59.

[19]

X. Liang, M. Chen, Q. Wang, S. Guo, L. Zhang, H. Yang, J. Mater. Chem. C 2018, 6, 7054.

[20]

Y. Zhou, X. Dong, Y. Mi, F. Fan, Q. Xu, H. Zhao, S. Wang, Y. Long, J. Mater. Chem. A 2020, 8, 10007.

[21]

W. Meng, A. J. J. Kragt, Y. Gao, E. Brembilla, X. Hu, J. S. van der Burgt, A. P. H. J. Schenning, T. Klein, G. Zhou, E. R. van den Ham, L. Tan, L. Li, J. Wang, L. Jiang, Adv. Mater. 2023, 2304910.

[22]

Y. Ru, Z. Shi, J. Zhang, J. Wang, B. Chen, R. Huang, G. Liu, T. Yu, Mater. Chem. Front. 2021, 5, 7737.

[23]

X. Zhang, L. Hou, P. Samori, Nat. Commun. 2016, 7, 11118.

[24]

Y. Wang, E. L. Runnerstrom, D. J. Milliron, Annu. Rev. Chem. Biomol. Eng. 2016, 7, 283.

[25]

X.-N. Li, H. Xu, L. Huang, Y. Shen, M.-J. Li, H. Zhang, Dyes Pigments 2023, 213, 111151.

[26]

H. Wang, H. K. Bisoyi, L. Wang, A. M. Urbas, T. J. Bunning, Q. Li, Angew. Chem. Int. Ed. 2018, 57, 1627.

[27]

J. Du, Z. Yang, H. Lin, D. Poelman, Responsive Mater. 2024, 2, e20240004.

[28]

A. B. A Kayani, S. Kuriakose, M. Monshipouri, F. A. Khalid, S. Walia, S. Sriram, M. Bhaskaran, Small 2021, 17, e2100621.

[29]

A. Cannavale, P. Cossari, G. E. Eperon, S. Colella, F. Fiorito, G. Gigli, H. J. Snaith, A. Listorti, Energy Environ. Sci. 2016, 9, 2682.

[30]

G. Syrrokostas, G. Leftheriotis, S. N. Yannopoulos, Renew. Sust. Energy Rev. 2022, 162, 112462.

[31]

C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B. A. Gregg, Nature 1996, 383, 608.

[32]

A. Hauch, A. Georg, S. Baumgärtner, U. Opara Krašovec, B. Orel, Electrochim. Acta 2001, 46, 2131.

[33]

M. Hočevar, U. Opara Krašovec, Sol. Energy Mater. Sol. Cells 2018, 186, 111.

[34]

H. Khandelwal, A. P. H. J. Schenning, M. G. Debije, Adv. Energy Mater. 2017, 7, 1602209.

[35]

S. Sarwar, S. Park, T. T. Dao, M.-s. Lee, A. Ullah, S. Hong, C.-H. Han, Sol. Energy Mater. Sol. Cells 2020, 210, 110498.

[36]

H. D. Nguyen, J. Kim, K.-K. Lee, Electrochim. Acta 2021, 374, 137964.

[37]

S. Sarwar, S. Park, T. T. Dao, S. Hong, C.-H. Han, Sol. Energy Mater. Sol. Cells 2021, 224, 110990.

[38]

T. T. Dao, S. Park, S. Sarwar, H. V. Tran, S. I. Lee, H. S. Park, S. H. Song, H. D. Nguyen, K. K. Lee, C. H. Han, S. Hong, Sol. Energy Mater. Sol. Cells 2021, 231, 111316.

[39]

M. Chen, X. Zhang, W. Sun, Y. Xiao, H. Zhang, J. Deng, Z. Li, D. Yan, J. Zhao, Y. Li, Nano Energy 2024, 123, 109352.

[40]

S. Wang, W. Fan, Z. Liu, A. Yu, X. Jiang, J. Mate. Chem. C 2018, 6, 191.

[41]

H. N. Kim, S. Yang, Adv. Funct. Mater. 2019, 30, 1902597.

[42]

Y. J. Zhou, N. Li, Y. C. Xin, X. Cao, S. D. Ji, P. Jin, J. Mate. Chem. C 2017, 5, 6251.

[43]

Y. Zhou, F. Fan, Y. P. Liu, S. S. Zhao, Q. Xu, S. C. Wang, D. Luo, Y. Long, Nano Energy 2021, 90, 106613.

[44]

N. Li, X. Cao, Y. Li, T. Chang, S. Long, Y. Zhou, G. Sun, L. Ge, P. Jin, Chem. Commun. 2018, 54, 5241.

[45]

R. Li, Y. Zhou, Z. Shao, S. Zhao, T. Chang, A. Huang, N. Li, S. Ji, P. Jin, ChemistrySelect 2019, 4, 9817.

[46]

O. L. Evdokimova, T. V. Kusova, O. S. Ivanova, A. B. Shcherbakov, K. E. Yorov, A. E. Baranchikov, A. V. Agafonov, V. K. Ivanov, Cellulose 2019, 26, 9095.

[47]

X. Dong, Q. Tian, Y. Lu, X. Liu, Y. Tong, K. Li, Z. Li, Sol. Energy Mater. Sol. Cells 2022, 245.

[48]

J. Kaur, N. Kaur, Savita, A. Sharma, Mater. Sci. Eng. B 2024, 299, 116931.

[49]

Y. Zhou, A. Huang, S. Ji, H. Zhou, P. Jin, R. Li, Chem. Asian J. 2018, 13, 457.

[50]

S. Yamazaki, H. Ishida, D. Shimizu, K. Adachi, ACS Appl. Mater. Interfaces 2015, 7, 26326.

[51]

S. Yamazaki, D. Shimizu, S. Tani, K. Honda, M. Sumimoto, K. Komaguchi, ACS Appl. Mater. Interfaces 2018, 10, 19889.

[52]

S. Yamazaki, K. Isoyama, D. Shimizu, Opt. Mater. 2020, 106, 109929.

[53]

Y. Zhu, Y. J. Yao, Z. Chen, Z. T. Zhang, P. Zhang, Z. F. Cheng, Y. F. Gao, Sol. Energy Mater. Sol. Cells 2022, 239, 111664.

[54]

J. Tang, H. Gu, Y. Zhao, M. Tan, W. Zhao, R. Ma, S. Zhang, D. Hu, Chem. Commun. 2023, 59, 6060.

[55]

Y. Badour, S. Danto, S. Albakour, S. Mornet, N. Penin, L. Hirsch, M. Gaudon, Sol. Energy Mater. Sol. Cells 2023, 255, 112291.

[56]

T. Ma, B. Li, S. Tian, J. Qian, L. Zhou, Q. Liu, B. Liu, X. Zhao, G. Sankar, Chem. Eng. J. 2023, 468, 143587.

[57]

X. Dong, Z. Wu, Y. Guo, Y. Tong, X. Liu, L. Zhang, Y. Lu, Sol. Energy Mater. Sol. Cells 2021, 219, 110784.

[58]

Y. Badour, S. Danto, C. Labrugere, M. Duttine, M. Gaudon, J. Electron. Mater. 2022, 51, 1555.

[59]

J. Wei, X. Jiao, T. Wang, D. Chen, ACS Appl. Mater. Interfaces 2016, 8, 29713.

[60]

J. Wei, X. L. Jiao, T. Wang, D. R. Chen, J. Mater. Chem. A 2018, 6, 14577.

[61]

W. Meng, A. J. J. Kragt, X. Hu, J. S. van der Burgt, A. P. H. J. Schenning, Y. Yue, G. Zhou, L. Li, P. Wei, W. Zhao, Y. Li, J. Wang, L. Jiang, Adv. Funct. Mater. 2024, 2402494.

[62]

J. Tao, S. Tian, B. Li, T. Ma, L. Zhou, X. Zhao, Chem. Eng. J. 2024, 482, 149079.

[63]

N. Li, Y. Li, Y. Zhou, W. Li, S. Ji, H. Yao, X. Cao, P. Jin, Sol. Energy Mater. Sol. Cells 2017, 160, 116.

[64]

J. Kaur, N. Kaur, Savita, A. Sharma, Mater. Chem. Phy. 2023, 310, 128471.

[65]

M. Morita, S. Toyoda, H. Kiuchi, T. Abe, K. Kumagai, T. Saida, K. Fukuda, ACS Appl. Nano Mater. 2021, 4, 8781.

[66]

H. Xu, L. Zhang, A. Wang, J. Hou, X. Guo, Nanomaterials 2021, 11, 3192.

[67]

O. Oderinde, O. Ejeromedoghene, G. Fu, P. Advan, Technol. 2021, 33, 687.

[68]

U. Joost, A. Sutka, M. Oja, K. Smits, N. Dobelin, A. Loot, M. Jarvekulg, M. Hirsimaki, M. Valden, E. Nommiste, Chem. Mater. 2018, 30, 8968.

[69]

R. Eglītis, U. Joost, A. Zukuls, K. Rubenis, R. Ignatāns, L. g. Avotiņa, L. Baumane, K. n. Šmits, M. Hirsimäki, T. Käämbre, A. Šutka, ACS Appl. Mater. Interfaces 2020, 12, 57609.

[70]

S. Yamazaki, K. Okimura, Langmuir 2022, 38, 14827.

[71]

Y. Yang, L. Guan, G. Gao, ACS Appl. Mater. Interfaces 2018, 10, 13975.

[72]

L. Guan, Y. Yang, F. Jia, G. Gao, React. Funct. Polym. 2019, 138, 88.

[73]

R. Guo, K. Hu, P. He, Y. Ni, K. Liu, H. Wu, L. Huang, L. Chen, Appl. Phy. A. 2020, 126, 812.

[74]

Y. Zhang, Z. Gao, F. Liu, L. Liu, M. Yan, W. Wang, ACS Appl. Nano Mater. 2022, 5, 13218.

[75]

T. Yimyai, D. Crespy, A. Pena-Francesch, Adv. Funct. Mater. 2023, 33, 2213717.

RIGHTS & PERMISSIONS

2024 The Author(s). Responsive Materials published by John Wiley & Sons Australia, Ltd on behalf of Southeast University.

AI Summary AI Mindmap
PDF

402

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/