Functional predictability of universal gene circuits in diverse microbial hosts

Chenrui Qin , Tong Xu , Xuejin Zhao , Yeqing Zong , Haoqian M. Zhang , Chunbo Lou , Qi Ouyang , Long Qian

Quant. Biol. ›› 2024, Vol. 12 ›› Issue (2) : 129 -140.

PDF (1467KB)
Quant. Biol. ›› 2024, Vol. 12 ›› Issue (2) : 129 -140. DOI: 10.1002/qub2.41
RESEARCH ARTICLE

Functional predictability of universal gene circuits in diverse microbial hosts

Author information +
History +
PDF (1467KB)

Abstract

Although the principles of synthetic biology were initially established in model bacteria, microbial producers, extremophiles and gut microbes have now emerged as valuable prokaryotic chassis for biological engineering. Extending the host range in which designed circuits can function reliably and predictably presents a major challenge for the concept of synthetic biology to materialize. In this work, we systematically characterized the cross-species universality of two transcriptional regulatory modules—the T7 RNA polymerase activator module and the repressors module—in three non-model microbes. We found striking linear relationships in circuit activities among different organisms for both modules. Parametrized model fitting revealed host non-specific parameters defining the universality of both modules. Lastly, a genetic NOT gate and a band-pass filter circuit were constructed from these modules and tested in non-model organisms. Combined models employing host non-specific parameters were successful in quantitatively predicting circuit behaviors, underscoring the potential of universal biological parts and predictive modeling in synthetic bioengineering.

Keywords

circuit predictability / host-independent genetic circuits / host-nonspecific parameters / parts characterization / transcriptional regulatory modules

Cite this article

Download citation ▾
Chenrui Qin, Tong Xu, Xuejin Zhao, Yeqing Zong, Haoqian M. Zhang, Chunbo Lou, Qi Ouyang, Long Qian. Functional predictability of universal gene circuits in diverse microbial hosts. Quant. Biol., 2024, 12(2): 129-140 DOI:10.1002/qub2.41

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Taketani M , Zhang J , Zhang S , Triassi AJ , Huang Y-J , Griffith LG , et al. Genetic circuit design automation for the gut resident species bacteroides thetaiotaomicron. Nat Biotechnol. 2020; 38 (8): 1001.

[2]

Adams BL . The next generation of synthetic biology chassis: moving synthetic biology from the laboratory to the field. ACS Synth Biol. 2016; 5 (12): 1328- 30.

[3]

Din MO , Danino T , Prindle A , Skalak M , Selimkhanov J , Allen K , et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature. 2016; 536 (7614): 81- 5.

[4]

El Karoui M , Hoyos-Flight M , Fletcher L . Future trends in synthetic biology—a report. Front Bioeng Biotechnol. 2019; 7: 175.

[5]

Canton B , Labno A , Endy D . Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol. 2008; 26 (7): 787- 93.

[6]

Valeri JA , Collins KM , Ramesh P , Alcantar MA , Lepe BA , Lu TK , et al. Sequence-to-function deep learning frameworks for engineered riboregulators. Nat Commun. 2020; 11 (1): 5058.

[7]

Elmore JR , Furches A , Wolff GN , Gorday K , Guss AM . Development of a high efficiency integration system and promoter library for rapid modification of pseudomonas putida kt2440. Metab Eng Commun. 2017; 5: 1- 8.

[8]

Roquet N , Soleimany AP , Ferris AC , Aaronson S , Lu TK . Synthetic recombinase-based state machines in living cells. Science. 2016; 353 (6297): aad8559.

[9]

Nielsen AAK , Voigt CA . Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol Syst Biol. 2014; 10 (11): 763.

[10]

Bradley RW , Buck M , Wang B . Tools and principles for microbial gene circuit engineering. J Mol Biol. 2016; 428 (5): 862- 88.

[11]

Stanton BC , Nielsen AA , Tamsir A , Clancy K , Peterson T , Voigt CA . Genomic mining of prokaryotic repressors for orthogonal logic gates. Nat Chem Biol. 2014; 10 (2): 99- 105.

[12]

Wang W , Li Y , Wang Y , Shi C , Li C , Li Q , et al. Bacteriophage T7 transcription system: an enabling tool in synthetic biology. Biotechnol Adv. 2018; 36 (8): 2129- 37.

[13]

Liang X , Li C , Wang W , Li Q . Integrating T7 RNA polymerase and its cognate transcriptional units for a host-independent and stable expression system in single plasmid. ACS Synth Biol. 2018; 7 (5): 1424- 35.

[14]

Ramos JL , Martínez-Bueno M , Molina-Henares AJ , Terán W , Watanabe K , Zhang X , et al. The TETR family of transcriptional repressors. Microbiol Mol Biol Rev. 2005; 69 (2): 326- 56.

[15]

Zong Y , Zhang HM , Lyu C , Ji X , Hou J , Guo X , et al. Insulated transcriptional elements enable precise design of genetic circuits. Nat Commun. 2017; 8 (1): 52.

[16]

Chen Y , Zhang S , Young EM , Jones TS , Densmore D , Voigt CA . Genetic circuit design automation for yeast. Nature Microbiol. 2020; 5 (11): 1349- 60.

[17]

Moon TS , Lou C , Tamsir A , Stanton BC , Voigt CA . Genetic programs constructed from layered logic gates in single cells. Nature. 2012; 491 (7423): 249- 53.

[18]

Andrews LB , Nielsen AAK , Voigt CA . Cellular checkpoint control using programmable sequential logic. Science. 2018; 361 (6408): aap8987.

[19]

Shin J , Zhang S , Der BS , Nielsen AAK , Voigt CA . Programming Escherichia coli to function as a digital display. Mol Syst Biol. 2020; 16 (3): e9401.

[20]

Liu CC , Jewett MC , Chin JW , Voigt CA . Toward an orthogonal central dogma. Nat Chem Biol. 2018; 14 (2): 103- 6.

[21]

Bintu L , Buchler NE , Garcia HG , Gerland U , Hwa T , Kondev J , et al. Transcriptional regulation by the numbers: models. Curr Opin Genet Dev. 2005; 15 (2): 116- 24.

[22]

Nielsen AA , Der BS , Shin J , Vaidyanathan P , Paralanov V , Strychalski EA , et al. Genetic circuit design automation. Science. 2016; 352 (6281): aac7341.

[23]

Ede C , Chen X , Lin M-Y , Chen YY . Quantitative analyses of core promoters enable precise engineering of regulated gene expression in mammalian cells. ACS Synth Biol. 2016; 5: 395- 404.

[24]

Kushwaha M , Salis HM . A portable expression resource for engineering cross-species genetic circuits and pathways. Nat Commun. 2015; 6 (1): 7832.

[25]

Kaplan S , Bren A , Dekel E , Alon U . The incoherent feed-forward loop can generate non-monotonic input functions for genes. Mol Syst Biol. 2008; 4 (1): 203.

[26]

Wang Y , Wang H , Wei L , Li S , Liu L , Wang X . Synthetic promoter design in escherichia coli based on a deep generative network. Nucleic Acids Res. 2020; 48 (12): 6403- 12.

[27]

Vilanova C , Tanner K , Dorado-Morales P , Villaescusa P , Chugani D , Frías A , et al. Standards not that standard. J Biol Eng. 2015; 9 (1): 17.

[28]

Cardinale S , Joachimiak MP , Arkin AP . Effects of genetic variation on the e. coli host-circuit interface. Cell Rep. 2013; 4 (2): 231- 7.

[29]

Keren L , Zackay O , Lotan-Pompan M , Barenholz U , Dekel E , Sasson V , et al. Promoters maintain their relative activity levels under different growth conditions. Mol Syst Biol. 2013; 9 (1): 701.

[30]

Mutalik VK , Guimaraes JC , Cambray G , Mai Q-A , Christoffersen MJ , Martin L , et al. Quantitative estimation of activity and quality for collections of functional genetic elements. Nat Methods. 2013; 10 (4): 347- 53.

[31]

Lou C , Stanton B , Chen Y-J , Munsky B , Voigt CA . Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat Biotechnol. 2012; 30 (11): 1137- 42.

[32]

Zhao X , Zong Y , Lou Q , Qin C , Lou C . A flexible, modular and versatile functional part assembly toolkit for gene cluster engineering in streptomyces. Synth Syst Biotechnol. 2024; 9 (1): 69- 77.

[33]

Temme K , Hill R , Segall-Shapiro TH , Moser F , Voigt CA . Modular control of multiple pathways using engineered orthogonal T7 polymerases. Nucleic Acids Res. 2012; 40 (17): 8773- 81.

[34]

Gardner TS , Cantor CR , Collins JJ . Construction of a genetic toggle switch in Escherichia coli. Nature. 2000; 403 (6767): 339- 42.

[35]

Hou J , Zeng W , Zong Y , Chen Z , Miao C , Wang B , et al. Engineering the ultrasensitive transcription factors by fusing a modular oligomerization domain. ACS Synth Biol. 2018; 7 (5): 1188- 94.

[36]

Salis HM . The ribosome binding site calculator. Methods Enzymol. 2011; 498: 19- 42.

[37]

Wilson EH , Groom JD , Sarfatis MC , Ford SM , Lidstrom ME , Beck DAC . A computational framework for identifying promoter sequences in nonmodel organisms using RNA-seq data sets. ACS Synth Biol. 2021; 10 (6): 1394- 405.

[38]

Sohka T , Heins RA , Phelan RM , Greisler JM , Townsend CA , Ostermeier M . An externally tunable bacterial band-pass filter. Proc Natl Acad Sci USA. 2009; 106 (25): 10135- 40.

[39]

Barajas C , Huang H-H , Gibson J , Sandoval L , Del Vecchio D . Feedforward growth rate control mitigates gene activation burden. Nat Commun. 2022; 13 (1): 7054.

[40]

Bashor CJ , Patel N , Choubey S , Beyzavi A , Kondev J , Collins JJ , et al. Complex signal processing in synthetic gene circuits using cooperative regulatory assemblies. Science. 2019; 364 (6440): 593- 7.

[41]

Barajas C , Del Vecchio D . Synthetic biology by controller design. Curr Opin Biotechnol. 2022; 78: 102837.

[42]

Liao C , Blanchard AE , Lu T . An integrative circuit-host modelling framework for predicting synthetic gene network behaviours. Nature Microbiol. 2017; 2 (12): 1658- 66.

[43]

Boo A , Ellis T , Stan G-B . Host-aware synthetic biology. Curr Opin Struct Biol. 2019; 14: 66- 72.

[44]

Zhang HM , Chen S , Shi H , Ji W , Zong Y , Ouyang Q , et al. Measurements of gene expression at steady state improve the predictability of part assembly. ACS Synth Biol. 2015; 5 (3): 269- 73.

[45]

Xiang Y , Dalchau N , Wang B . Scaling up genetic circuit design for cellular computing: advances and prospects. Nat Comput. 2018; 17 (4): 833- 53.

[46]

Pausch P , Al-Shayeb B , Bisom-Rapp E , Tsuchida CA , Li Z , Cress BF , et al. Crispr-casφ from huge phages is a hypercompact genome editor. Science. 2020; 369 (6501): 333- 7.

[47]

Anzalone AV , Koblan LW , Liu DR . Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020; 38 (7): 824- 44.

[48]

Angenent-Mari NM , Garruss AS , Soenksen LR , Church G , Collins JJ . A deep learning approach to programmable rna switches. Nat Commun. 2020; 11 (1): 5057.

[49]

Way JC , Collins JJ , Keasling JD , Silver PA . Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell. 2014; 157 (1): 151- 61.

RIGHTS & PERMISSIONS

2024 The Authors. Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (1467KB)

659

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/