Decoding fear of negative evaluation from brain morphology: A machine-learning study on structural neuroimaging data

Chunliang Feng, Frank Krueger, Ruolei Gu, Wenbo Luo

PDF(2892 KB)
PDF(2892 KB)
Quant. Biol. ›› 2022, Vol. 10 ›› Issue (4) : 390-402. DOI: 10.15302/J-QB-021-0266
RESEARCH ARTICLE
RESEARCH ARTICLE

Decoding fear of negative evaluation from brain morphology: A machine-learning study on structural neuroimaging data

Author information +
History +

Abstract

Background: Fear of negative evaluation (FNE), referring to negative expectation and feelings toward other people’s social evaluation, is closely associated with social anxiety that plays an important role in our social life. Exploring the neural markers of FNE may be of theoretical and practical significance to psychiatry research (e.g., studies on social anxiety).

Methods: To search for potentially relevant biomarkers of FNE in human brain, the current study applied multivariate relevance vector regression, a machine-learning and data-driven approach, on brain morphological features (e.g., cortical thickness) derived from structural imaging data; further, we used these features as indexes to predict self-reported FNE score in each participant.

Results: Our results confirm the predictive power of multiple brain regions, including those engaged in negative emotional experience (e.g., amygdala, insula), regulation and inhibition of emotional feeling (e.g., frontal gyrus, anterior cingulate gyrus), and encoding and retrieval of emotional memory (e.g., posterior cingulate cortex, parahippocampal gyrus).

Conclusions: The current findings suggest that anxiety represents a complicated construct that engages multiple brain systems, from primitive subcortical mechanisms to sophisticated cortical processes.

Author summary

The current findings indicate that fear of negative evaluation, an anxiety-related trait, could be decoded from the structural features of individual brains. These findings advance our understanding on the neural signatures of anxiety and implicate potential clinical applications of brain imaging measures.

Graphical abstract

Keywords

fear of negative evaluation / social anxiety / structural magnetic resonance imaging / machine learning / relevance vector regression

Cite this article

Download citation ▾
Chunliang Feng, Frank Krueger, Ruolei Gu, Wenbo Luo. Decoding fear of negative evaluation from brain morphology: A machine-learning study on structural neuroimaging data. Quant. Biol., 2022, 10(4): 390‒402 https://doi.org/10.15302/J-QB-021-0266

References

[1]
American-Psychiatric-Association. ( 2013) Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). Arlington, VA: American Psychiatric Publishing
[2]
ClarkD. M.. ( 1995) A cognitive model of social phobia. In: Social phobia: Diagnosis, Assessment, and Treatment, Heimberg, R. G., Liebowitz, M. R., Hope, D. A. and Schneier, F. R. (Eds.), pp. 69– 93, New York: Guilford Press
[3]
Rapee,R. M. Heimberg,R. ( 1997). A cognitive-behavioral model of anxiety in social phobia. Behav. Res. Ther., 35 : 741– 756
CrossRef Google scholar
[4]
Watson,D. ( 1969). Measurement of social-evaluative anxiety. J. Consult. Clin. Psychol., 33 : 448– 457
CrossRef Google scholar
[5]
Carleton,R. N., Collimore,K. C., McCabe,R. E. Antony,M. ( 2011). Addressing revisions to the brief fear of negative evaluation scale: measuring fear of negative evaluation across anxiety and mood disorders. J. Anxiety Disord., 25 : 822– 828
CrossRef Google scholar
[6]
Winton,E. C., Clark,D. M. Edelmann,R. ( 1995). Social anxiety, fear of negative evaluation and the detection of negative emotion in others. Behav. Res. Ther., 33 : 193– 196
CrossRef Google scholar
[7]
Wells,A., Clark,D. M., Salkovskis,P., Ludgate,J., Hackmann,A. ( 1995). Social phobia: The role of in-situation safety behaviors in maintaining anxiety and negative beliefs. Behav. Ther., 26 : 153– 161
CrossRef Google scholar
[8]
Weeks,J. W., Heimberg,R. G., Fresco,D. M., Hart,T. A., Turk,C. L., Schneier,F. R. Liebowitz,M. ( 2005). Empirical validation and psychometric evaluation of the brief fear of negative evaluation scale in patients with social anxiety disorder. Psychol. Assess., 17 : 179– 190
CrossRef Google scholar
[9]
Miskovic,V. Schmidt,L. ( 2012). Social fearfulness in the human brain. Neurosci. Biobehav. Rev., 36 : 459– 478
CrossRef Google scholar
[10]
LeDoux,J. ( 2000). Emotion circuits in the brain. Annu. Rev. Neurosci., 23 : 155– 184
CrossRef Google scholar
[11]
LeDoux,J. ( 2003). The emotional brain, fear, and the amygdala. Cell. Mol. Neurobiol., 23 : 727– 738
CrossRef Google scholar
[12]
Marek,R., Strobel,C., Bredy,T. W. ( 2013). The amygdala and medial prefrontal cortex: partners in the fear circuit. J. Physiol., 591 : 2381– 2391
CrossRef Google scholar
[13]
Bishop,S., Duncan,J., Brett,M. Lawrence,A. ( 2004). Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat. Neurosci., 7 : 184– 188
CrossRef Google scholar
[14]
Bishop,S. ( 2007). Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn. Sci., 11 : 307– 316
CrossRef Google scholar
[15]
Bishop,S. ( 2009). Trait anxiety and impoverished prefrontal control of attention. Nat. Neurosci., 12 : 92– 98
CrossRef Google scholar
[16]
Kim,M. J., Gee,D. G., Loucks,R. A., Davis,F. C. Whalen,P. ( 2011). Anxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cereb. Cortex, 21 : 1667– 1673
CrossRef Google scholar
[17]
Kim,M. J. Whalen,P. ( 2009). The structural integrity of an amygdala-prefrontal pathway predicts trait anxiety. J. Neurosci., 29 : 11614– 11618
CrossRef Google scholar
[18]
Paulus,M. P. Stein,M. ( 2006). An insular view of anxiety. Biol. Psychiatry, 60 : 383– 387
CrossRef Google scholar
[19]
Stein,M. B., Simmons,A. N., Feinstein,J. S. Paulus,M. ( 2007). Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am. J. Psychiatry, 164 : 318– 327
CrossRef Google scholar
[20]
Baur,V., nggi,J., Langer,N. ( 2013). Resting-state functional and structural connectivity within an insula-amygdala route specifically index state and trait anxiety. Biol. Psychiatry, 73 : 85– 92
CrossRef Google scholar
[21]
Straube,T., Kolassa,I. T., Glauer,M., Mentzel,H. J. Miltner,W. ( 2004). Effect of task conditions on brain responses to threatening faces in social phobics: an event-related functional magnetic resonance imaging study. Biol. Psychiatry, 56 : 921– 930
CrossRef Google scholar
[22]
Lira Yoon,K., Fitzgerald,D. A., Angstadt,M., McCarron,R. A. Phan,K. ( 2007). Amygdala reactivity to emotional faces at high and low intensity in generalized social phobia: a 4-Tesla functional MRI study. Psychiatry Res., 154 : 93– 98
CrossRef Google scholar
[23]
Stein,M. B., Goldin,P. R., Sareen,J., Zorrilla,L. T. Brown,G. ( 2002). Increased amygdala activation to angry and contemptuous faces in generalized social phobia. Arch. Gen. Psychiatry, 59 : 1027– 1034
CrossRef Google scholar
[24]
Blair,K. S., Geraci,M., Otero,M., Majestic,C., Odenheimer,S., Jacobs,M., Blair,R. J. Pine,D. ( 2011). Atypical modulation of medial prefrontal cortex to self-referential comments in generalized social phobia. Psychiatry Res., 193 : 38– 45
CrossRef Google scholar
[25]
Boehme,S., Ritter,V., Tefikow,S., Stangier,U., Strauss,B., Miltner,W. H. ( 2014). Brain activation during anticipatory anxiety in social anxiety disorder. Soc. Cogn. Affect. Neurosci., 9 : 1413– 1418
CrossRef Google scholar
[26]
Izuma,K., Saito,D. N. ( 2008). Processing of social and monetary rewards in the human striatum. Neuron, 58 : 284– 294
CrossRef Google scholar
[27]
Izuma,K., Saito,D. N. ( 2010). Processing of the incentive for social approval in the ventral striatum during charitable donation. J. Cogn. Neurosci., 22 : 621– 631
CrossRef Google scholar
[28]
Nutt,D. J., Bell,C. J. Malizia,A. ( 1998). Brain mechanisms of social anxiety disorder. J. Clin. Psychiatry, 59 : 4– 11
[29]
Blackford,J. U. Pine,D. ( 2012). Neural substrates of childhood anxiety disorders: a review of neuroimaging findings. Child Adolesc. Psychiatr. Clin. N. Am., 21 : 501– 525
CrossRef Google scholar
[30]
Mochcovitch,M. D., da Rocha Freire,R. C., Garcia,R. F. Nardi,A. ( 2014). A systematic review of fMRI studies in generalized anxiety disorder: evaluating its neural and cognitive basis. J. Affect. Disord., 167 : 336– 342
CrossRef Google scholar
[31]
Domschke,K. ( 2010). Imaging genetics of anxiety disorders. Neuroimage, 53 : 822– 831
CrossRef Google scholar
[32]
Grupe,D. W. Nitschke,J. ( 2013). Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat. Rev. Neurosci., 14 : 488– 501
CrossRef Google scholar
[33]
Xia,F. Kheirbek,M. ( 2020). Circuit-based biomarkers for mood and anxiety disorders. Trends Neurosci., 43 : 902– 915
CrossRef Google scholar
[34]
Dafflon,J., Pinaya,W. H. L., Turkheimer,F., Cole,J. H., Leech,R., Harris,M. A., Cox,S. R., Whalley,H. C., McIntosh,A. M. Hellyer,P. ( 2020). An automated machine learning approach to predict brain age from cortical anatomical measures. Hum. Brain Mapp., 41 : 3555– 3566
CrossRef Google scholar
[35]
Tipping,M. ( 2001). Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res., 1 : 211– 244
[36]
Li,S., Yuan,X., Pu,F., Li,D., Fan,Y., Wu,L., Chao,W., Chen,N., He,Y. ( 2014). Abnormal changes of multidimensional surface features using multivariate pattern classification in amnestic mild cognitive impairment patients. J. Neurosci., 34 : 10541– 10553
CrossRef Google scholar
[37]
Ecker,C., Marquand,A., o-Miranda,J., Johnston,P., Daly,E. M., Brammer,M. J., Maltezos,S., Murphy,C. M., Robertson,D., Williams,S. C. . ( 2010). Describing the brain in autism in five dimensions-magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. J. Neurosci., 30 : 10612– 10623
CrossRef Google scholar
[38]
Westman,E., Aguilar,C., Muehlboeck,J. S. ( 2013). Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer’s disease and mild cognitive impairment. Brain Topogr., 26 : 9– 23
CrossRef Google scholar
[39]
Sui,J., Jiang,R., Bustillo,J. ( 2020). Neuroimaging-based individualized prediction of cognition and behavior for mental disorders and health: Methods and promises. Biol. Psychiatry, 88 : 818– 828
CrossRef Google scholar
[40]
Cheng,B., Zhang,D., Chen,S., Kaufer,D. I., Shen,D. ( 2013). Semi-supervised multimodal relevance vector regression improves cognitive performance estimation from imaging and biological biomarkers. Neuroinformatics, 11 : 339– 353
CrossRef Google scholar
[41]
Feng,C., Cui,Z., Cheng,D., Xu,R. ( 2019). Individualized prediction of dispositional worry using white matter connectivity. Psychol. Med., 49 : 1999– 2008
CrossRef Google scholar
[42]
Xu,J., Van Dam,N. T., Feng,C., Luo,Y., Ai,H., Gu,R. ( 2019). Anxious brain networks: A coordinate-based activation likelihood estimation meta-analysis of resting-state functional connectivity studies in anxiety. Neurosci. Biobehav. Rev., 96 : 21– 30
CrossRef Google scholar
[43]
Yeo,B. T., Krienen,F. M., Sepulcre,J., Sabuncu,M. R., Lashkari,D., Hollinshead,M., Roffman,J. L., Smoller,J. W., llei,L., Polimeni,J. R. . ( 2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol., 106 : 1125– 1165
CrossRef Google scholar
[44]
Sheline,Y. I., Price,J. L., Yan,Z. Mintun,M. ( 2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc. Natl. Acad. Sci. USA, 107 : 11020– 11025
CrossRef Google scholar
[45]
Choi,E. Y., Yeo,B. T. Buckner,R. ( 2012). The organization of the human striatum estimated by intrinsic functional connectivity. J. Neurophysiol., 108 : 2242– 2263
CrossRef Google scholar
[46]
Buckner,R. L., Krienen,F. M., Castellanos,A., Diaz,J. C. Yeo,B. ( 2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol., 106 : 2322– 2345
CrossRef Google scholar
[47]
Sang,L., Qin,W., Liu,Y., Han,W., Zhang,Y., Jiang,T. ( 2012). Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. Neuroimage, 61 : 1213– 1225
CrossRef Google scholar
[48]
Amaral,D. ( 2002). The primate amygdala and the neurobiology of social behavior: implications for understanding social anxiety. Biol. Psychiatry, 51 : 11– 17
CrossRef Google scholar
[49]
Hahn,A., Stein,P., Windischberger,C., Weissenbacher,A., Spindelegger,C., Moser,E., Kasper,S. ( 2011). Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. Neuroimage, 56 : 881– 889
CrossRef Google scholar
[50]
Duval,E. R., Joshi,S. A., Russman Block,S., Abelson,J. L. ( 2018). Insula activation is modulated by attention shifting in social anxiety disorder. J. Anxiety Disord., 56 : 56– 62
CrossRef Google scholar
[51]
Klumpp,H., Post,D., Angstadt,M., Fitzgerald,D. A. Phan,K. ( 2013). Anterior cingulate cortex and insula response during indirect and direct processing of emotional faces in generalized social anxiety disorder. Biol. Mood Anxiety Disord., 3 : 7
CrossRef Google scholar
[52]
Phan,K. L., Fitzgerald,D. A., Nathan,P. J. Tancer,M. ( 2006). Association between amygdala hyperactivity to harsh faces and severity of social anxiety in generalized social phobia. Biol. Psychiatry, 59 : 424– 429
CrossRef Google scholar
[53]
Bas-Hoogendam,J. M., van Steenbergen,H., van der Wee,N. J. A. Westenberg,P. ( 2020). Amygdala hyperreactivity to faces conditioned with a social-evaluative meaning− a multiplex, multigenerational fMRI study on social anxiety endophenotypes. Neuroimage Clin., 26 : 102247
CrossRef Google scholar
[54]
Klumpp,H., Angstadt,M. Phan,K. ( 2012). Insula reactivity and connectivity to anterior cingulate cortex when processing threat in generalized social anxiety disorder. Biol. Psychol., 89 : 273– 276
CrossRef Google scholar
[55]
Shah,S. G., Klumpp,H., Angstadt,M., Nathan,P. J. Phan,K. ( 2009). Amygdala and insula response to emotional images in patients with generalized social anxiety disorder. J. Psychiatry Neurosci., 34 : 296– 302
[56]
Rossignol,M., Campanella,S., Bissot,C. ( 2013). Fear of negative evaluation and attentional bias for facial expressions: an event-related study. Brain Cogn., 82 : 344– 352
CrossRef Google scholar
[57]
Birk,S. L., Horenstein,A., Weeks,J., Olino,T., Heimberg,R., Goldin,P. R. Gross,J. ( 2019). Neural responses to social evaluation: The role of fear of positive and negative evaluation. J. Anxiety Disord., 67 : 102114
CrossRef Google scholar
[58]
Gu,R., Ao,X., Mo,L. ( 2020). Neural correlates of negative expectancy and impaired social feedback processing in social anxiety. Soc. Cogn. Affect. Neurosci., 15 : 285– 291
CrossRef Google scholar
[59]
Syal,S., Hattingh,C. J., Spottiswoode,B., Carey,P. D., Lochner,C. Stein,D. ( 2012). Grey matter abnormalities in social anxiety disorder: a pilot study. Metab. Brain Dis., 27 : 299– 309
CrossRef Google scholar
[60]
Kawaguchi,A., Nemoto,K., Nakaaki,S., Kawaguchi,T., Kan,H., Arai,N., Shiraishi,N., Hashimoto,N. ( 2016). Insular volume reduction in patients with social anxiety disorder. Front. Psychiatry, 7 : 3
CrossRef Google scholar
[61]
Papousek,I. ( 2001). Associations between EEG asymmetries and electrodermal lability in low vs. high depressive and anxious normal individuals. Int. J. Psychophysiol., 41 : 105– 117
CrossRef Google scholar
[62]
Blackhart,G. C., Minnix,J. A. Kline,J. ( 2006). Can EEG asymmetry patterns predict future development of anxiety and depression? A preliminary study.. Biol. Psychol., 72 : 46– 50
CrossRef Google scholar
[63]
Aftanas,L. I. Pavlov,S. ( 2005). Trait anxiety impact on posterior activation asymmetries at rest and during evoked negative emotions: EEG investigation. Int. J. Psychophysiol., 55 : 85– 94
CrossRef Google scholar
[64]
Davidson,R. J. Fox,N. ( 1982). Asymmetrical brain activity discriminates between positive and negative affective stimuli in human infants. Science, 218 : 1235– 1237
CrossRef Google scholar
[65]
Davidson,R. J. Fox,N. ( 1989). Frontal brain asymmetry predicts infants’ response to maternal separation. J. Abnorm. Psychol., 98 : 127– 131
CrossRef Google scholar
[66]
Kalin,N. H., Larson,C., Shelton,S. E. Davidson,R. ( 1998). Asymmetric frontal brain activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys. Behav. Neurosci., 112 : 286– 292
CrossRef Google scholar
[67]
Wheeler,R. E., Davidson,R. J. Tomarken,A. ( 1993). Frontal brain asymmetry and emotional reactivity: a biological substrate of affective style. Psychophysiology, 30 : 82– 89
CrossRef Google scholar
[68]
Geiger,M. J., Domschke,K., Ipser,J., Hattingh,C., Baldwin,D. S., Lochner,C. Stein,D. ( 2016). Altered executive control network resting-state connectivity in social anxiety disorder. World J. Biol. Psychiatry, 17 : 47– 57
CrossRef Google scholar
[69]
Seeley,W. W., Menon,V., Schatzberg,A. F., Keller,J., Glover,G. H., Kenna,H., Reiss,A. L. Greicius,M. ( 2007). Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci., 27 : 2349– 2356
CrossRef Google scholar
[70]
Morillas-Romero,A., Tortella-Feliu,M., Balle,M. ( 2015). Spontaneous emotion regulation and attentional control. Emotion, 15 : 162– 175
CrossRef Google scholar
[71]
Tully,L. M., Lincoln,S. H. Hooker,C. ( 2012). Impaired executive control of emotional information in social anhedonia. Psychiatry Res., 197 : 29– 35
CrossRef Google scholar
[72]
Jacob,Y., Shany,O., Goldin,P. R., Gross,J. J. ( 2019). Reappraisal of interpersonal criticism in social anxiety disorder: A brain network hierarchy perspective. Cereb. Cortex, 29 : 3154– 3167
CrossRef Google scholar
[73]
Binder,J. R. Desai,R. ( 2011). The neurobiology of semantic memory. Trends Cogn. Sci., 15 : 527– 536
CrossRef Google scholar
[74]
Zhang,D., Lin,Y., Jing,Y., Feng,C. ( 2019). The dynamics of belief updating in human cooperation: Findings from inter-brain ERP hyperscanning. Neuroimage, 198 : 1– 12
CrossRef Google scholar
[75]
Nielsen,F. A., Balslev,D. Hansen,L. ( 2005). Mining the posterior cingulate: segregation between memory and pain components. Neuroimage, 27 : 520– 532
CrossRef Google scholar
[76]
Murty,V. P., Ritchey,M., Adcock,R. A. LaBar,K. ( 2010). fMRI studies of successful emotional memory encoding: A quantitative meta-analysis. Neuropsychologia, 48 : 3459– 3469
CrossRef Google scholar
[77]
Medford,N., Phillips,M. L., Brierley,B., Brammer,M., Bullmore,E. T. David,A. ( 2005). Emotional memory: separating content and context. Psychiatry Res., 138 : 247– 258
CrossRef Google scholar
[78]
Erk,S., Kiefer,M., Grothe,J., Wunderlich,A. P., Spitzer,M. ( 2003). Emotional context modulates subsequent memory effect. Neuroimage, 18 : 439– 447
CrossRef Google scholar
[79]
Mitelman,S. ( 2019). Transdiagnostic neuroimaging in psychiatry: A review. Psychiatry Res., 277 : 23– 38
CrossRef Google scholar
[80]
Etkin,A. ( 2019). A reckoning and research agenda for neuroimaging in psychiatry. Am. J. Psychiatry, 176 : 507– 511
CrossRef Google scholar
[81]
Linden,D. ( 2012). The challenges and promise of neuroimaging in psychiatry. Neuron, 73 : 8– 22
CrossRef Google scholar
[82]
Tang,H., Lu,X., Cui,Z., Feng,C., Lin,Q., Cui,X., Su,S. ( 2018). Resting-state functional connectivity and deception: Exploring individualized deceptive propensity by machine learning. Neuroscience, 395 : 101– 112
CrossRef Google scholar
[83]
Lu,X., Li,T., Xia,Z., Zhu,R., Wang,L., Luo,Y. J., Feng,C. ( 2019). Connectome-based model predicts individual differences in propensity to trust. Hum. Brain Mapp., 40 : 1942– 1954
CrossRef Google scholar
[84]
Stonnington,C. M., Chu,C., ppel,S., Jack,C. R. Ashburner,J. Frackowiak,R. S. ( 2010). Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. Neuroimage, 51 : 1405– 1413
CrossRef Google scholar
[85]
Liu,F., Guo,W., Fouche,J. P., Wang,Y., Wang,W., Ding,J., Zeng,L., Qiu,C., Gong,Q., Zhang,W. . ( 2015). Multivariate classification of social anxiety disorder using whole brain functional connectivity. Brain Struct. Funct., 220 : 101– 115
CrossRef Google scholar
[86]
Whitfield-Gabrieli,S., Ghosh,S. S., Nieto-Castanon,A., Saygin,Z., Doehrmann,O., Chai,X. J., Reynolds,G. O., Hofmann,S. G., Pollack,M. H. Gabrieli,J. ( 2016). Brain connectomics predict response to treatment in social anxiety disorder. Mol. Psychiatry, 21 : 680– 685
CrossRef Google scholar
[87]
Liu,F., Zhu,C., Wang,Y., Guo,W., Li,M., Wang,W., Long,Z., Meng,Y., Cui,Q., Zeng,L. . ( 2015). Disrupted cortical hubs in functional brain networks in social anxiety disorder. Clin. Neurophysiol., 126 : 1711– 1716
CrossRef Google scholar
[88]
Fox,R. S., Kwakkenbos,L., Carrier,M. E., Mills,S. D., Gholizadeh,S., Jewett,L. R., Roesch,S. C., Merz,E. L., Assassi,S., Furst,D. E. . ( 2018). Reliability and validity of three versions of the brief fear of negative evaluation scale in patients with systemic sclerosis: A scleroderma patient-centered intervention network cohort study. Arthritis Care Res. (Hoboken), 70 : 1646– 1652
CrossRef Google scholar
[89]
Wong,Q. J. Moulds,M. ( 2014). An examination of the measurement equivalence of the brief fear of negative evaluation scale across individuals who identify with an asian ethnicity and individuals who identify with a European ethnicity. Assessment, 21 : 713– 722
CrossRef Google scholar
[90]
Bach,D. R., Hoffmann,M., Finke,C., Hurlemann,R. Ploner,C. ( 2019). Disentangling hippocampal and amygdala contribution to human anxiety-like behavior. J. Neurosci., 39 : 8517– 8526
CrossRef Google scholar
[91]
Berry,A. S., White,R. L. Furman,D. J., Naskolnakorn,J. R., Shah,V. D., Esposito,M. Jagust,W. ( 2019). Dopaminergic mechanisms underlying normal variation in trait anxiety. J. Neurosci., 39 : 2735– 2744
CrossRef Google scholar
[92]
Fung,B. J., Qi,S., Hassabis,D., Daw,N. ( 2019). Slow escape decisions are swayed by trait anxiety. Nat. Hum. Behav., 3 : 702– 708
CrossRef Google scholar
[93]
Geng,H., Wang,Y., Gu,R., Luo,Y. J., Xu,P., Huang,Y. ( 2018). Altered brain activation and connectivity during anticipation of uncertain threat in trait anxiety. Hum. Brain Mapp., 39 : 3898– 3914
CrossRef Google scholar
[94]
McNaughton,N. ( 2019). Brain maps of fear and anxiety. Nat. Hum. Behav., 3 : 662– 663
CrossRef Google scholar
[95]
Leary,M. ( 1983). A brief version of the fear of negative evaluation scale. Pers. Soc. Psychol. Bull., 9 : 371– 375
CrossRef Google scholar
[96]
Collins,K. A., Westra,H. A., Dozois,D. J. Stewart,S. ( 2005). The validity of the brief version of the fear of negative evaluation scale. J. Anxiety Disord., 19 : 345– 359
CrossRef Google scholar
[97]
Rodebaugh,T. L., Woods,C. M., Thissen,D. M., Heimberg,R. G., Chambless,D. L. Rapee,R. ( 2004). More information from fewer questions: the factor structure and item properties of the original and brief fear of negative evaluation scale. Psychol. Assess., 16 : 169– 181
CrossRef Google scholar
[98]
Dale,A. M., Fischl,B. Sereno,M. ( 1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9 : 179– 194
CrossRef Google scholar
[99]
Destrieux,C., Fischl,B., Dale,A. ( 2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage, 53 : 1– 15
CrossRef Google scholar
[100]
Gong,Q., Li,L., Du,M., Pettersson-Yeo,W., Crossley,N., Yang,X., Li,J., Huang,X. ( 2014). Quantitative prediction of individual psychopathology in trauma survivors using resting-state FMRI. Neuropsychopharmacology, 39 : 681– 687
CrossRef Google scholar
[101]
Franke,K., Ziegler,G., ppel,S., Gaser,C. ( 2010). Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage, 50 : 883– 892
CrossRef Google scholar
[102]
Feng,C., Zhu,Z., Cui,Z., Ushakov,V., Dreher,J. Luo,W., Gu,R., Wu,X. ( 2021). Prediction of trust propensity from intrinsic brain morphology and functional connectome. Hum Brain Mapp. 42, 175– 191
[103]
Cui,Z. ( 2018). The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. Neuroimage, 178 : 622– 637
CrossRef Google scholar
[104]
Erus,G., Battapady,H., Satterthwaite,T. D., Hakonarson,H., Gur,R. E., Davatzikos,C. Gur,R. ( 2015). Imaging patterns of brain development and their relationship to cognition. Cereb. Cortex, 25 : 1676– 1684
CrossRef Google scholar

AUTHOR CONTRIBUTIONS

CF conceived the experiment, performed the experiment, collected the data, and analyzed the data. CF, FK, RG, and WL wrote the manuscript.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (Nos. 31900757, 32071083 and 32020103008), the Major Program of the Chinese National Social Science Foundation (No. 17ZDA324), and the Youth Innovation Promotion Association, CAS (No. 2019088).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Chunliang Feng, Frank Krueger, Ruolei Gu and Wenbo Luo declare that they have no conflict of interest.
All procedures performed in this study were in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The local ethics committee approved the experimental protocol.

RIGHTS & PERMISSIONS

2022 The Authors (2022). Published by Higher Education Press.
AI Summary AI Mindmap
PDF(2892 KB)

Accesses

Citations

Detail

Sections
Recommended

/