Phase separation in synthetic biology

Shi Shuyu, Si Wen, Ouyang Xiaoyi, Wei Ping

PDF(6623 KB)
PDF(6623 KB)
Quant. Biol. ›› 2021, Vol. 9 ›› Issue (4) : 378-399. DOI: 10.15302/J-QB-021-0262
REVIEW
REVIEW

Phase separation in synthetic biology

Author information +
History +

Abstract

Background: The concept of phase separation has been used to describe and interpret physicochemical phenomena in biological systems for decades. Many intracellular macromolecules undergo phase separation, where it plays important roles in gene regulation, cellular signaling, metabolic reactions and so on, due to its unique dynamic properties and biological effects. As the noticeable importance of phase separation, pioneer researchers have explored the possibility to introduce the synthetically engineered phase separation for applicable cell function.

Results: In this article, we illustrated the application value of phase separation in synthetic biology. We described main states of phase separation in detail, summarized some ways to implement synthetic condensates and several methods to regulate phase separation, and provided a substantial amount of identical examples to illuminate the applications and perspectives of phase separation in synthetic biology.

Conclusions: Multivalent interactions implement phase separation in synthetic biology. Small molecules, light control and spontaneous interactions induce and regulate phase separation. The synthetic condensates are widely used in signal amplifications, designer orthogonally non-membrane-bound organelles, metabolic pathways, gene regulations, signaling transductions and controllable platforms. Studies on quantitative analysis, more standardized modules and precise spatiotemporal control of synthetic phase separation may promote the further development of this field.

Author summary

A substantial amount of physical theories and biological experiments have been developed to uncover the underlying principles of phase separation in biology. The synthetic condensates through phase separation have been used to implement many specific functions in biological systems. In the future, more biomedical functions related to phase separation can be explored, more diseases triggered or accelerated by phase separation may be treated better, more artificial applications can be realized by synthetic condensates.

Graphical abstract

Keywords

phase separation / synthetic biology / multivalent interaction / non-membrane-bound organelle / signaling transduction and amplification

Cite this article

Download citation ▾
Shi Shuyu, Si Wen, Ouyang Xiaoyi, Wei Ping. Phase separation in synthetic biology. Quant. Biol., 2021, 9(4): 378‒399 https://doi.org/10.15302/J-QB-021-0262

References

[1]
MitreaD. M. , Kriwacki, R. W.. Phase separation in biology; functional organization of a higher order. Cell Commun. Signal., 2016, 14 : 1–
CrossRef Google scholar
[2]
HymanA. A., Weber, C. A. , Jülicher, F.. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol., 2014, 30 : 39– 58
CrossRef Google scholar
[3]
LuzioJ. P., Pryor, P. R. , Bright, N. A.. Lysosomes: fusion and function. Nat. Rev. Mol. Cell Biol., 2007, 8 : 622– 632
CrossRef Google scholar
[4]
FriedmanJ. R. , Nunnari, J.. Mitochondrial form and function. Nature, 2014, 505 : 335– 343
CrossRef Google scholar
[5]
BoisvertF.-M., van Koningsbruggen, S., Navascués, J. , Lamond, A. I.. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol., 2007, 8 : 574– 585
CrossRef Google scholar
[6]
BuchanJ. R. , Parker, R.. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell, 2009, 36 : 932– 941
CrossRef Google scholar
[7]
DeckerC. J. , Parker, R.. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb. Perspect. Biol., 2012, 4 : a012286–
CrossRef Google scholar
[8]
BrangwynneP., C.R., EckmannS., C.A. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 2009, 324 : 1729– 1732
CrossRef Google scholar
[9]
BoeynaemsL., S.Den Bosch. Protein phase separation: a new phase in cell biology. Trends Cell Biol., 2018, 28 : 420– 435
CrossRef Google scholar
[10]
BananiS. F., Lee, H. O., Hyman, A. A. , Rosen, M. K.. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol., 2017, 18 : 285– 298
CrossRef Google scholar
[11]
BerryJ., Brangwynne, C. P. , Haataja, M.. Physical principles of intracellular organization via active and passive phase transitions. Rep. Prog. Phys., 2018, 81 : 046601–
CrossRef Google scholar
[12]
WilsonE. B.. The structure of protoplasm. Science, 1899, 10 : 33– 45
CrossRef Google scholar
[13]
TangL.. Liquid phase separation. Nat. Methods, 2019, 16 : 18–
CrossRef Google scholar
[14]
ZhangH., Ji, X., Li, P., Liu, C., Lou, J., Wang, Z., Wen, W., Xiao, Y., Zhang, M. , Zhu, X.. Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci. China Life Sci., 2020, 63 : 953– 985
CrossRef Google scholar
[15]
GoodrichJ. , Taatjes, D.. Transcription regulation enters a new phase. Nature, 2018, 558 : 197– 198
[16]
HarlenK. M. , Churchman, L. S.. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol., 2017, 18 : 263– 273
CrossRef Google scholar
[17]
LuH., Yu, D., Hansen, A. S., Ganguly, S., Liu, R., Heckert, A., Darzacq, X. , Zhou, Q.. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature, 2018, 558 : 318– 323
CrossRef Google scholar
[18]
WeiM.-T., Chang, Y.-C., Shimobayashi, S. F., Shin, Y., Strom, A. R. , Brangwynne, C. P.. Nucleated transcriptional condensates amplify gene expression. Nat. Cell Biol., 2020, 22 : 1187– 1196
CrossRef Google scholar
[19]
ZaborowskaJ., Egloff, S. , Murphy, S.. The pol II CTD: new twists in the tail. Nat. Struct. Mol. Biol., 2016, 23 : 771– 777
CrossRef Google scholar
[20]
BoijaA., A.R., KleinL., I.V., SabariH., B.C.and Hannett, Dall’AgneseM. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell, 2018, 175 : 1842– 1855.e16
CrossRef Google scholar
[21]
GuoE., Y.C., ManteigaE., J.R., HenningerM., J.K., SabariV.. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature, 2019, 572 : 543– 548
CrossRef Google scholar
[22]
SabariR., B.A., Dall’AgneseL., A.J., BoijaM., A.V., KleinC.. Coactivator condensation at super-enhancers links phase separation and gene control. Science, 2018, 361 : eaar3958–
CrossRef Google scholar
[23]
ZuoL., Zhang, G., Massett, M., Cheng, J., Guo, Z., Wang, L., Gao, Y., Li, R., Huang, X., Li, P.. Loci-specific phase separation of FET fusion oncoproteins promotes gene transcription. Nat. Commun., 2021, 12 : 1491–
CrossRef Google scholar
[24]
ErdelF. , Rippe, K.. Formation of chromatin subcompartments by phase separation. Biophys. J., 2018, 114 : 2262– 2270
CrossRef Google scholar
[25]
NarlikarG. J.. Phase-separation in chromatin organization. J. Biosci., 2020, 45 : 5–
CrossRef Google scholar
[26]
PalikyrasS. , Papantonis, A.. Modes of phase separation affecting chromatin regulation. Open Biol., 2019, 9 : 190167–
CrossRef Google scholar
[27]
LarsonG., A.M., ElnatanJ., D.B., KeenenL., M.A., TrnkaJ. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature, 2017, 547 : 236– 240
CrossRef Google scholar
[28]
StromA. R., Emelyanov, A. V., Mir, M., Fyodorov, D. V., Darzacq, X. , Karpen, G. H.. Phase separation drives heterochromatin domain formation. Nature, 2017, 547 : 241– 245
CrossRef Google scholar
[29]
YoshizawaT., Nozawa, R. S., Jia, T. Z., Saio, T. , Mori, E.. Biological phase separation: cell biology meets biophysics. Biophys. Rev., 2020, 12 : 519– 539
CrossRef Google scholar
[30]
GibsonA., B.K., DoolittleW., L.E., SchneiderW., M.K. Organization of chromatin by intrinsic and regulated phase separation. Cell, 2019, 179 : 470– 484.e21
CrossRef Google scholar
[31]
BeckerJ. S., Nicetto, D. , Zaret, K. S.. H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet., 2016, 32 : 29– 41
CrossRef Google scholar
[32]
KilicS., Bachmann, A. L., Bryan, L. C. , Fierz, B.. Multivalency governs HP1α association dynamics with the silent chromatin state. Nat. Commun., 2015, 6 : 7313–
CrossRef Google scholar
[33]
WangL., Gao, Y., Zheng, X., Liu, C., Dong, S., Li, R., Zhang, G., Wei, Y., Qu, H., Li, Y.. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol. Cell, 2019, 76 : 646– 659
CrossRef Google scholar
[34]
WeiC., Cheng, J., Zhou, B., Zhu, L., Khan, M. A., He, T., Zhou, S., He, J., Lu, X., Chen, H.. Tripartite motif containing 28 (TRIM28) promotes breast cancer metastasis by stabilizing TWIST1 protein. Sci. Rep., 2016, 6 : 29822–
CrossRef Google scholar
[35]
SanulliJ., S.W., TrnkaD., M.L., DharmarajanR., V.D., TibbleJ. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature, 2019, 575 : 390– 394
CrossRef Google scholar
[36]
BannisterA. J., Zegerman, P., Partridge, J. F., Miska, E. A., Thomas, J. O., Allshire, R. C. , Kouzarides, T.. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 2001, 410 : 120– 124
CrossRef Google scholar
[37]
GrewalS. I., Moazed, D.. Heterochromatin and epigenetic control of gene expression. Science, 2003, 301 : 798– 802
CrossRef Google scholar
[38]
ZhangW., Liu, W., Jia, L., Chen, D., Chang, I., Lake, M., Bentolila, L. A. , Wang, C. Y.. Targeting KDM4A epigenetically activates tumor-cell-intrinsic immunity by inducing DNA replication stress. Mol. Cell, 2021, 81 : 2148– 2165
CrossRef Google scholar
[39]
ShakyaA., Park, S., Rana, N. , King, J. T.. Liquid-liquid phase separation of histone proteins in cells: role in chromatin organization. Biophys. J., 2020, 118 : 753– 764
CrossRef Google scholar
[40]
BrewerC. F., Miceli, M. C. , Baum, L. G.. Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr. Opin. Struct. Biol., 2002, 12 : 616– 623
CrossRef Google scholar
[41]
CaseL. B., Ditlev, J. A. , Rosen, M. K.. Regulation of transmembrane signaling by phase separation. Annu. Rev. Biophys., 2019, 48 : 465– 494
CrossRef Google scholar
[42]
CaseL. B., Zhang, X., Ditlev, J. A. , Rosen, M. K.. Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. Science, 2019, 363 : 1093– 1097
CrossRef Google scholar
[43]
HoutmanC., J.L.. Binding specificity of multiprotein signaling complexes is determined by both cooperative interactions and affinity preferences. Biochemistry, 2004, 43 : 4170– 4178
CrossRef Google scholar
[44]
HuangY. C., W.K., AlvarezK., S.Y. M., KondoH., Y.T. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science, 2019, 363 : 1098– 1103
CrossRef Google scholar
[45]
KimS., Kalappurakkal, J. M., Mayor, S. , Rosen, M. K.. Phosphorylation of Nephrin induces phase separated domains that move through actomyosin contraction. Mol. Biol. Cell., 2019, 30 : 2996– 3012
CrossRef Google scholar
[46]
DuM. , Chen, Z. J.. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science, 2018, 361 : 704– 709
CrossRef Google scholar
[47]
YooH., Triandafillou, C. , Drummond, D. A.. Cellular sensing by phase separation: Using the process, not just the products. J. Biol. Chem., 2019, 294 : 7151– 7159
CrossRef Google scholar
[48]
BurdetteD. L. , Vance, R. E.. STING and the innate immune response to nucleic acids in the cytosol. Nat. Immunol., 2013, 14 : 19– 26
CrossRef Google scholar
[49]
AcunaC., Liu, X. , Südhof, T. C.. How to make an active zone: unexpected universal functional redundancy between RIMs and RIM-BPs. Neuron, 2016, 91 : 792– 807
CrossRef Google scholar
[50]
MittelstaedtT., Alvaréz-Baron, E. , Schoch, S.. RIM proteins and their role in synapse function. Biol. Chem., 2010, 391 : 599– 606
CrossRef Google scholar
[51]
WuX., Cai, Q., Shen, Z., Chen, X., Zeng, M., Du, S. , Zhang, M.. RIM and RIM-BP form presynaptic active-zone-like condensates via phase separation. Mol. Cell, 2019, 73 : 971– 984.e5
CrossRef Google scholar
[52]
ZengM., Chen, X., Guan, D., Xu, J., Wu, H., Tong, P. , Zhang, M.. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell, 2018, 174 : 1172– 1187.e16
CrossRef Google scholar
[53]
ZengM., Shang, Y., Araki, Y., Guo, T., Huganir, R. L. , Zhang, M.. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell, 2016, 166 : 1163– 1175.e12
CrossRef Google scholar
[54]
AguzziA. , Altmeyer, M.. Phase separation: linking cellular compartmentalization to disease. Trends Cell Biol., 2016, 26 : 547– 558
CrossRef Google scholar
[55]
BhopatkarA. A., Uversky, V. N. , Rangachari, V.. Granulins modulate liquid-liquid phase separation and aggregation of prion-like C-terminal domain of the neurodegeneration-associated protein TDP-43. J. Biol., Chem., 2020, 295 : 2506– 2519
CrossRef Google scholar
[56]
ConicellaA. E., Zerze, G. H., Mittal, J. , Fawzi, N. L.. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure, 2016, 24 : 1537– 1549
CrossRef Google scholar
[57]
PatelO., A.Y., LeeM.. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell, 2015, 162 : 1066– 1077
CrossRef Google scholar
[58]
AmbadipudiS., Biernat, J., Riedel, D., Mandelkow, E. , Zweckstetter, M.. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat. Commun., 2017, 8 : 275–
CrossRef Google scholar
[59]
GustkeN., Trinczek, B., Biernat, J., Mandelkow, E.-M. , Mandelkow, E.. Domains of tau protein and interactions with microtubules. Biochemistry, 1994, 33 : 9511– 9522
CrossRef Google scholar
[60]
WegmannM., S.E., EftekharzadehR.. Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J., 2018, 37 : e98049–
CrossRef Google scholar
[61]
Bergeron-SandovalW. Mechanisms and consequences of macromolecular phase separation. Cell, 2016, 165 : 1067– 1079
CrossRef Google scholar
[62]
CableV., J.A., BrangwynneE.. Phase separation in biology and disease-a symposium report. Ann. N. Y. Acad. Sci., 2019, 1452 : 3– 11
CrossRef Google scholar
[63]
ZbindenA., Pérez-Berlanga, M., De Rossi, P. , Polymenidou, M.. Phase separation and neurodegenerative diseases: A disturbance in the force. Dev. Cell, 2020, 55 : 45– 68
CrossRef Google scholar
[64]
MutschlerH., Robinson, T., Tang, T. D. , Wegner, S.. Special issue on bottom-up synthetic biology. ChemBioChem, 2019, 20 : 2533– 2534
CrossRef Google scholar
[65]
AndrianantoandroE., Basu, S., Karig, D. K. , Weiss, R.. Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol., 2006, 2 : 2006.0028–
CrossRef Google scholar
[66]
SchwilleP.. Bottom-up synthetic biology: engineering in a tinkerer’s world. Science, 2011, 333 : 1252– 1254
CrossRef Google scholar
[67]
BennerS. A. , Sismour, A. M.. Synthetic biology. Nat. Rev. Genet., 2005, 6 : 533– 543
CrossRef Google scholar
[68]
Oparin, A. (1953) The Origin of Life. 2nd ed. New York: Dover
[69]
PoudyalR. R., Pir Cakmak, F., Keating, C. D. , Bevilacqua, P. C.. Physical principles and extant biology reveal roles for RNA-containing membraneless compartments in origins of life chemistry. Biochemistry, 2018, 57 : 2509– 2519
CrossRef Google scholar
[70]
HastingsR. L. , Boeynaems, S.. Designer condensates: A toolkit for the biomolecular architect. J. Mol. Biol., 2021, 433 : 166837–
CrossRef Google scholar
[71]
AlbertiS., Gladfelter, A. , Mittag, T.. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell, 2019, 176 : 419– 434
CrossRef Google scholar
[72]
RibackA., J.C., ZhuM., L.W., FerrolinoT., M.W., TolbertP. Composition-dependent thermodynamics of intracellular phase separation. Nature, 2020, 581 : 209– 214
CrossRef Google scholar
[73]
ShinY. , Brangwynne, C. P.. Liquid phase condensation in cell physiology and disease. Science, 2017, 357 : eaaf4382–
CrossRef Google scholar
[74]
JonesR. , Weitz, D.. Soft Condensed Matter. Phys. Today, 2003, 56 : 63– 64
[75]
BabinchakW. M. , Surewicz, W. K.. Liquid-liquid phase separation and its mechanistic role in pathological protein aggregation. J. Mol. Biol., 2020, 432 : 1910– 1925
CrossRef Google scholar
[76]
SunY., Zhao, K., Xia, W., Feng, G., Gu, J., Ma, Y., Gui, X., Zhang, X., Fang, Y., Sun, B.. The nuclear localization sequence mediates hnRNPA1 amyloid fibril formation revealed by cryoEM structure. Nat. Commun., 2020, 11 : 6349–
CrossRef Google scholar
[77]
KanaanN. M., Hamel, C., Grabinski, T. , Combs, B.. Liquid-liquid phase separation induces pathogenic tau conformations in vitro. Nat. Commun., 2020, 11 : 2809–
CrossRef Google scholar
[78]
AlbertiS.. Phase separation in biology. Curr. Biol., 2017, 27 : R1097– R1102
CrossRef Google scholar
[79]
FranzmannM., T.S., JahnelW., M.V.. Phase separation of a yeast prion protein promotes cellular fitness. Science, 2018, 359 : eaao5654–
CrossRef Google scholar
[80]
NottJ., T.D., PetsalakiP., E.D.. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell, 2015, 57 : 936– 947
CrossRef Google scholar
[81]
RuffK. M., Roberts, S., Chilkoti, A. , Pappu, R. V.. Advances in understanding stimulus-responsive phase behavior of intrinsically disordered protein polymers. J. Mol. Biol., 2018, 430 : 4619– 4635
CrossRef Google scholar
[82]
MohammadiV. I., P.P. J., JonkergouwB. Controllable coacervation of recombinantly produced spider silk protein using kosmotropic salts. J. Colloid Interface Sci., 2020, 560 : 149– 160
CrossRef Google scholar
[83]
DaoP., T.J., KolaitisP., R.-M.A. Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol. Cell., 2018, 69 : 965– 978.e6
CrossRef Google scholar
[84]
RaiA. K., Chen, J.-X., Selbach, M. , Pelkmans, L.. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature, 2018, 559 : 211– 216
CrossRef Google scholar
[85]
BananiS. F., Rice, A. M., Peeples, W. B., Lin, Y., Jain, S., Parker, R. , Rosen, M. K.. Compositional control of phase-separated cellular bodies. Cell, 2016, 166 : 651– 663
CrossRef Google scholar
[86]
MittagT. , Parker, R.. Multiple modes of protein–protein interactions promote RNP granule assembly. J. Mol. Biol., 2018, 430 : 4636– 4649
CrossRef Google scholar
[87]
StattA., Casademunt, H., Brangwynne, C. , Panagiotopoulos, A.. Model for intrinsically disordered proteins with a strong dependence of liquid-liquid phase separation on sequence. Bull. Am. Phys. Soc., 2020, 152 : 075101–
[88]
UverskyV. N.. Intrinsically disordered proteins in overcrowded milieu: Membrane-less organelles, phase separation, and intrinsic disorder. Curr. Opin. Struct. Biol., 2017, 44 : 18– 30
CrossRef Google scholar
[89]
BrangwynneC. P., Tompa, P. , Pappu, R. V.. Polymer physics of intracellular phase transitions. Nat. Phys., 2015, 11 : 899– 904
CrossRef Google scholar
[90]
Elbaum-GarfinkleC.-H., S.R., KimP. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl. Acad. Sci. USA, 2015, 112 : 7189– 7194
CrossRef Google scholar
[91]
SmithJ., Calidas, D., Schmidt, H., Lu, T., Rasoloson, D. , Seydoux, G.. Spatial patterning of P granules by RNA-induced phase separation of the intrinsically-disordered protein MEG-3. eLife, 2016, 5 : e21337–
CrossRef Google scholar
[92]
WangS., J.O.. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell, 2018, 174 : 688– 699.e16
CrossRef Google scholar
[93]
RibackA., J.D., KatanskiL., C.V., Kear-ScottE., J.R., PilipenkoA. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell, 2017, 168 : 1028– 1040.e19
CrossRef Google scholar
[94]
ChongP. A., Vernon, R. M. , Forman-Kay, J. D.. RGG/RG motif regions in RNA binding and phase separation. J. Mol. Biol., 2018, 430 : 4650– 4665
CrossRef Google scholar
[95]
ThandapaniP., O’Connor, T. R., Bailey, T. L. , Richard, S.. Defining the RGG/RG motif. Mol. Cell, 2013, 50 : 613– 623
CrossRef Google scholar
[96]
ShinY., Berry, J., Pannucci, N., Haataja, M. P., Toettcher, J. E. , Brangwynne, C. P.. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell, 2017, 168 : 159– 171.e14
CrossRef Google scholar
[97]
DueberE., J.C., WuR., G.S., MalmircheginiJ., G.V., MoonL., T.D. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol., 2009, 27 : 753– 759
CrossRef Google scholar
[98]
ReinkemeierC. D., Girona, G. E. , Lemke, E. A.. Designer membraneless organelles enable codon reassignment of selected mRNAs in eukaryotes. Science, 2019, 363 : eaaw2644–
CrossRef Google scholar
[99]
MonahanH., Z.M., RyanA., V.N., JankeH., A.L., BurkeE.. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J., 2017, 36 : 2951– 2967
CrossRef Google scholar
[100]
QamarJ., S.S., WangA., G.Q., RandleC.. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell, 2018, 173 : 720– 734.e15
CrossRef Google scholar
[101]
HanT. W., Kato, M., Xie, S., Wu, L. C., Mirzaei, H., Pei, J., Chen, M., Xie, Y., Allen, J., Xiao, G.. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell, 2012, 149 : 768– 779
CrossRef Google scholar
[102]
KatoW., M.C., HanJ.. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell, 2012, 149 : 753– 767
CrossRef Google scholar
[103]
MurakamiQ., T.S. K., QamarR., S.B., LinT., J.H.. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron, 2015, 88 : 678– 690
CrossRef Google scholar
[104]
MurthyA. C., Dignon, G. L., Kan, Y., Zerze, G. H., Parekh, S. H., Mittal, J. , Fawzi, N. L.. Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nat. Struct. Mol. Biol., 2019, 26 : 637– 648
CrossRef Google scholar
[105]
MurrayD. T., Kato, M., Lin, Y., Thurber, K. R., Hung, I., McKnight, S. L. , Tycko, R.. Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell, 2017, 171 : 615– 627.e16
CrossRef Google scholar
[106]
ZhaoE. M., Suek, N., Wilson, M. Z., Dine, E., Pannucci, N. L., Gitai, Z., Avalos, J. L. , Toettcher, J. E.. Light-based control of metabolic flux through assembly of synthetic organelles. Nat. Chem. Biol., 2019, 15 : 589– 597
CrossRef Google scholar
[107]
VernonR. M. , Forman-Kay, J. D.. First-generation predictors of biological protein phase separation. Curr. Opin. Struct. Biol., 2019, 58 : 88– 96
CrossRef Google scholar
[108]
HughesP., M.R., SawayaR., M.A., BoyerS. Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks. Science, 2018, 359 : 698– 701
CrossRef Google scholar
[109]
KrainerJ., G.A., WelshR., T.A.. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat. Commun., 2021, 12 : 1085–
CrossRef Google scholar
[110]
PawlukA.. Breaking the Rules. Cell, 2018, 173 : 805– 807
CrossRef Google scholar
[111]
FrazerI., C.A., StaplesV., M.D., KimH., Y.L., HirakawaJ.. Epigenetic cell fate in Candida albicans is controlled by transcription factor condensates acting at super-enhancer-like elements. Nat. Microbiol., 2020, 5 : 1374– 1389
CrossRef Google scholar
[112]
BradyP., J.J., FarberJ., P.S., SekharJ., A.D.. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proc. Natl. Acad. Sci. USA, 2017, 114 : E8194– E8203
CrossRef Google scholar
[113]
ReichheldS. E., Muiznieks, L. D., Keeley, F. W. , Sharpe, S.. Direct observation of structure and dynamics during phase separation of an elastomeric protein. Proc. Natl. Acad. Sci. USA, 2017, 114 : E4408– E4415
CrossRef Google scholar
[114]
BanjadeS. , Rosen, M. K.. Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife, 2014, 3 : e04123–
CrossRef Google scholar
[115]
BanjadeS., Wu, Q., Mittal, A., Peeples, W. B., Pappu, R. V. , Rosen, M. K.. Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck. Proc. Natl. Acad. Sci. USA, 2015, 112 : E6426– E6435
CrossRef Google scholar
[116]
LiV., P.S., BanjadeF.. Phase transitions in the assembly of multivalent signalling proteins. Nature, 2012, 483 : 336– 340
CrossRef Google scholar
[117]
ShenB., Chen, Z., Yu, C., Chen, T., Shi, M. , Li, T.. Computational screening of biological phase-separating proteins. Genom. Proteom. Bioinform., 2021, S1672– 0229(21)00022-X
[118]
LinY., Protter, D. S., Rosen, M. K. , Parker, R.. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell, 2015, 60 : 208– 219
CrossRef Google scholar
[119]
WoolfsonD. N., Bartlett, G. J., Burton, A. J., Heal, J. W., Niitsu, A., Thomson, A. R. , Wood, C. W.. De novo protein design: how do we expand into the universe of possible protein structures?. Curr. Opin. Struct. Biol., 2015, 33 : 16– 26
CrossRef Google scholar
[120]
HuangY., P.-S.L., OberdorferM.. High thermodynamic stability of parametrically designed helical bundles. Science, 2014, 346 : 481– 485
CrossRef Google scholar
[121]
ThomsonA. R., Wood, C. W., Burton, A. J., Bartlett, G. J., Sessions, R. B., Brady, R. L. , Woolfson, D. N.. Computational design of water-soluble α-helical barrels. Science, 2014, 346 : 485– 488
CrossRef Google scholar
[122]
ZhangR., Q.B. Visualizing dynamics of cell signaling in vivo with a phase separation-based kinase reporter. Mol. Cell, 2018, 69 : 334– 346.e4
CrossRef Google scholar
[123]
SchusterS., B.H., ReedN., E.M., ParthasarathyG., R.C., JahnkeA. Controllable protein phase separation and modular recruitment to form responsive membraneless organelles. Nat. Commun., 2018, 9 : 2985–
CrossRef Google scholar
[124]
KolarK. , Weber, W.. Synthetic biological approaches to optogenetically control cell signaling. Curr. Opin. Biotechnol., 2017, 47 : 112– 119
CrossRef Google scholar
[125]
TangL.. Optogenetic tools light up phase separation. Nat. Methods, 2019, 16 : 139–
CrossRef Google scholar
[126]
LiY.-J., Stark, J. M., Chen, D. J., Ann, D. K. , Chen, Y.. Role of SUMO: SIM-mediated protein-protein interaction in non-homologous end joining. Oncogene, 2010, 29 : 3509– 3518
CrossRef Google scholar
[127]
HusnjakK., Keiten-Schmitz, J. , Müller, S.. Identification and characterization of SUMO-SIM interactions. Methods Mol. Biol., 2016, 1475 : 79– 98
CrossRef Google scholar
[128]
ParkR., S.-Y.C. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 2009, 324 : 1068– 1071
[129]
YinP., Fan, H., Hao, Q., Yuan, X., Wu, D., Pang, Y., Yan, C., Li, W., Wang, J. , Yan, N.. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat. Struct. Mol. Biol., 2009, 16 : 1230– 1236
CrossRef Google scholar
[130]
LumbaS., Cutler, S. , McCourt, P.. Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions. Annu. Rev. Cell Dev. Biol., 2010, 26 : 445– 469
CrossRef Google scholar
[131]
WheelerJ., R.O., LeeN., H.C. Small molecules for modulating protein driven liquid-liquid phase separation in treating neurodegenerative disease. bioRxiv, 2019, 721001–
CrossRef Google scholar
[132]
YangX., Jost, A. P.-T., Weiner, O. D. , Tang, C.. A light-inducible organelle-targeting system for dynamically activating and inactivating signaling in budding yeast. Mol. Biol. Cell, 2013, 24 : 2419– 2430
CrossRef Google scholar
[133]
BrachaD., Walls, M. T., Wei, M.-T., Zhu, L., Kurian, M., Avalos, J. L., Toettcher, J. E. , Brangwynne, C. P.. Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell, 2018, 175 : 1467– 1480.e13
CrossRef Google scholar
[134]
DineE., Gil, A. A., Uribe, G., Brangwynne, C. P. , Toettcher, J. E.. Protein phase separation provides long-term memory of transient spatial stimuli. Cell Syst., 2018, 6 : 655– 663.e5
CrossRef Google scholar
[135]
ShinS., Y.W., ChangS., Y.-C.P. Liquid nuclear condensates mechanically sense and restructure the genome. Cell, 2018, 175 : 1481– 1491.e13
CrossRef Google scholar
[136]
SchneiderN., Wieland, F.-G., Kong, D., Fischer, A. A. M., Hörner, M., Timmer, J., Ye, H. , Weber, W.. Liquid-liquid phase separation of light-inducible transcription factors increases transcription activation in mammalian cells and mice. Sci. Adv., 2021, 7 : eabd3568–
CrossRef Google scholar
[137]
BuckleyC. E., Moore, R. E., Reade, A., Goldberg, A. R., Weiner, O. D. , Clarke, J. D. W.. Reversible optogenetic control of subcellular protein localization in a live vertebrate embryo. Dev. Cell, 2016, 36 : 117– 126
CrossRef Google scholar
[138]
ReedE. H., Schuster, B. S., Good, M. C. , Hammer, D. A.. SPLIT: stable protein coacervation using a light induced transition. ACS Synth. Biol., 2020, 9 : 500– 507
CrossRef Google scholar
[139]
DolginE.. Cell biology’s new phase. Nature, 2018, 555 : 300– 302
CrossRef Google scholar
[140]
ZhaoY. G. , Zhang, H.. Phase separation in membrane biology: The interplay between membrane-bound organelles and membraneless condensates. Dev. Cell, 2020, 55 : 30– 44
CrossRef Google scholar
[141]
MaW., MayrC.. A membraneless organelle associated with the endoplasmic reticulum enables 3′ UTR-mediated protein-protein interactions. Cell, 2018, 175 : 1492– 1506.e19
CrossRef Google scholar
[142]
ProuteauM. , Loewith, R.. Regulation of cellular metabolism through phase separation of enzymes. Biomolecules, 2018, 8 : 160–
CrossRef Google scholar
[143]
CastellanaM., Wilson, M. Z., Xu, Y., Joshi, P., Cristea, I. M., Rabinowitz, J. D., Gitai, Z. , Wingreen, N. S.. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat. Biotechnol., 2014, 32 : 1011– 1018
CrossRef Google scholar
[144]
LiuM., He, S., Cheng, L., Qu, J. , Xia, J.. Phase-separated multienzyme biosynthesis. Biomacromolecules, 2020, 21 : 2391– 2399
CrossRef Google scholar
[145]
PiccinnoR., Minneker, V. , Roukos, V.. 53BP1-DNA repair enters a new liquid phase. EMBO J., 2019, 38 : e102871–
CrossRef Google scholar
[146]
JacksonS. P. , Bartek, J.. The DNA-damage response in human biology and disease. Nature, 2009, 461 : 1071– 1078
CrossRef Google scholar
[147]
PanierS. , Boulton, S. J.. Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol., 2014, 15 : 7– 18
CrossRef Google scholar
[148]
SchwertmanP., Bekker-Jensen, S. , Mailand, N.. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat. Rev. Mol. Cell Biol., 2016, 17 : 379– 394
CrossRef Google scholar
[149]
WilsonM. D. , Durocher, D.. Reading chromatin signatures after DNA double-strand breaks. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, 372 : 20160280–
CrossRef Google scholar
[150]
KilicS., Lezaja, A., Gatti, M., Bianco, E., Michelena, J., Imhof, R. , Altmeyer, M.. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. EMBO J., 2019, 38 : e101379–
CrossRef Google scholar
[151]
Pessina. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat. Cell Biol., 2019, 21 : 1286– 1299
CrossRef Google scholar
[152]
LieberM. R.. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem., 2010, 79 : 181– 211
CrossRef Google scholar
[153]
HeyerW.-D., Ehmsen, K. T. , Liu, J.. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet., 2010, 44 : 113– 139
CrossRef Google scholar
[154]
ChapmanJ. R., Taylor, M. R. , Boulton, S. J.. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell, 2012, 47 : 497– 510
CrossRef Google scholar
[155]
GossenM. , Bujard, H.. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA, 1992, 89 : 5547– 5551
CrossRef Google scholar
[156]
SimonJ. R., Eghtesadi, S. A., Dzuricky, M., You, L. , Chilkoti, A.. Engineered ribonucleoprotein granules inhibit translation in protocells. Mol. Cell, 2019, 75 : 66– 75
CrossRef Google scholar
[157]
McDanielJ. R., Radford, D. C. , Chilkoti, A.. A unified model for de novo design of elastin-like polypeptides with tunable inverse transition temperatures. Biomacromolecules, 2013, 14 : 2866– 2872
CrossRef Google scholar
[158]
RauscherS. , Pomès, R.. The liquid structure of elastin. eLife, 2017, 6 : e26526–
CrossRef Google scholar
[159]
RobertsS., Dzuricky, M. , Chilkoti, A.. Elastin-like polypeptides as models of intrinsically disordered proteins. FEBS Lett., 2015, 589 : 2477– 2486
CrossRef Google scholar
[160]
DuanT. , Li, H.. In situ phase transition of elastin-like polypeptide chains regulates thermoresponsive properties of elastomeric protein-based hydrogels. Biomacromolecules, 2020, 21 : 2258– 2267
CrossRef Google scholar
[161]
TruongA. T., Hamada, K., Yamada, Y., Guo, H., Kikkawa, Y., Okamoto, C. T., MacKay, J. A. , Nomizu, M.. Evaluation of extracellular matrix mimetic laminin bioactive peptide and elastin-like polypeptide. FASEB J., 2020, 34 : 6729– 6740
CrossRef Google scholar
[162]
ChungH. K., Zou, X., Bajar, B. T., Brand, V. R., Huo, Y., Alcudia, J. F., Ferrell, J. E. Jr , Lin, M. Z.. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science, 2019, 364 : eaat6982–
CrossRef Google scholar
[163]
RickertR. C.. New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat. Rev. Immunol., 2013, 13 : 578– 591
CrossRef Google scholar
[164]
StricklandM., D.R., LinL.. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods, 2012, 9 : 379– 384
CrossRef Google scholar
[165]
McSwiggenD. T., Mir, M., Darzacq, X. , Tjian, R.. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev., 2019, 33 : 1619– 1634
CrossRef Google scholar
[166]
NarayananA., Meriin, A., Andrews, J. O., Spille, J.-H., Sherman, M. Y. , Cisse, I. I.. A first order phase transition mechanism underlies protein aggregation in mammalian cells. eLife, 2019, 8 : e39695–
CrossRef Google scholar
[167]
JawerthL. M., Ijavi, M., Ruer, M., Saha, S., Jahnel, M., Hyman, A. A., Jülicher, F. , Fischer-Friedrich, E.. Salt-dependent rheology and surface tension of protein condensates using optical traps. Phys. Rev. Lett., 2018, 121 : 258101–
CrossRef Google scholar
[168]
YangX., Wei, J., Wang, Y., Yang, C., Zhao, S., Li, C., Dong, Y., Bai, K., Li, Y., Teng, H.. A genetically encoded protein polymer for uranyl binding and extraction based on the SpyTag-SpyCatcher chemistry. ACS Synth. Biol., 2018, 7 : 2331– 2339
CrossRef Google scholar
[169]
VernonR. M., Chong, P. A., Tsang, B., Kim, T. H., Bah, A., Farber, P., Lin, H. , Forman-Kay, J. D.. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. eLife, 2018, 7 : e31486–
CrossRef Google scholar
[170]
MartinE. W. , Mittag, T.. Relationship of sequence and phase separation in protein low-complexity regions. Biochemistry, 2018, 57 : 2478– 2487
CrossRef Google scholar
[171]
NingW., Guo, Y., Lin, S., Mei, B., Wu, Y., Jiang, P., Tan, X., Zhang, W., Chen, G., Peng, D.. DrLLPS: a data resource of liquid-liquid phase separation in eukaryotes. Nucleic Acids Res., 2020, 48 : D288– D295
CrossRef Google scholar
[172]
LiQ., Peng, X., Li, Y., Tang, W., Zhu, J., Huang, J., Qi, Y. , Zhang, Z.. LLPSDB: a database of proteins undergoing liquid-liquid phase separation in vitro. Nucleic Acids Res., 2020, 48 : D320– D327
CrossRef Google scholar
[173]
YouK., Huang, Q., Yu, C., Shen, B., Sevilla, C., Shi, M., Hermjakob, H., Chen, Y. , Li, T.. PhaSepDB: a database of liquid-liquid phase separation related proteins. Nucleic Acids Res., 2020, 48 : D354– D359
CrossRef Google scholar
[174]
MészárosP.. PhaSePro: the database of proteins driving liquid-liquid phase separation. Nucleic Acids Res, 2020, 48 : D360– D367
[175]
SunT., Li, Q., Xu, Y., Zhang, Z., Lai, L. , Pei, J.. Prediction of liquid-liquid phase separation proteins using machine learning. bioRxiv, 2019, 842336–
CrossRef Google scholar
[176]
FericS., M.M., VaidyaM., N.W., HarmonV., T.P. Coexisting liquid phases underlie nucleolar subcompartments. Cell, 2016, 165 : 1686– 1697
CrossRef Google scholar
[177]
ZhuL. , Brangwynne, C. P.. Nuclear bodies: the emerging biophysics of nucleoplasmic phases. Curr. Opin. Cell Biol., 2015, 34 : 23– 30
CrossRef Google scholar
[178]
GogliaA. G. , Toettcher, J. E.. A bright future: optogenetics to dissect the spatiotemporal control of cell behavior. Curr. Opin. Chem. Biol., 2019, 48 : 106– 113
CrossRef Google scholar
[179]
WilsonM. Z., Ravindran, P. T., Lim, W. A. , Toettcher, J. E.. Tracing information flow from Erk to target gene induction reveals mechanisms of dynamic and combinatorial control. Mol. cell, 2017, 67 : 757– 769.e5
CrossRef Google scholar
[180]
Krawczyk. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science, 2020, 368 : 993– 1001
CrossRef Google scholar

ACKNOWLEDGEMENTS

Works presented by Peking 2018 team in International Genetically Engineered Machine (iGEM) competition inspire this article. We thank Cheng Li, Xin Li, Chunfeng Zhang and Ziheng Zhao from Peking University for their assistance. This work was supported by the National Key Basic Research Program of China 2018YFA0902800 (P.W.) and the National Natural Science Foundation of China 31470819 (P.W.), 31622022 (P.W.).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Shuyu Shi, Wen Si, Xiaoyi Ouyang and Ping Wei declare that they have no conflict of interests. This article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

OPEN ACCESS

This article is licensed by the CC By under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2021 Authors 2021. Published by Higher Education Press.
AI Summary AI Mindmap
PDF(6623 KB)

Accesses

Citations

Detail

Sections
Recommended

/