Phase separation in synthetic biology
Shi Shuyu, Si Wen, Ouyang Xiaoyi, Wei Ping
Phase separation in synthetic biology
Background: The concept of phase separation has been used to describe and interpret physicochemical phenomena in biological systems for decades. Many intracellular macromolecules undergo phase separation, where it plays important roles in gene regulation, cellular signaling, metabolic reactions and so on, due to its unique dynamic properties and biological effects. As the noticeable importance of phase separation, pioneer researchers have explored the possibility to introduce the synthetically engineered phase separation for applicable cell function.
Results: In this article, we illustrated the application value of phase separation in synthetic biology. We described main states of phase separation in detail, summarized some ways to implement synthetic condensates and several methods to regulate phase separation, and provided a substantial amount of identical examples to illuminate the applications and perspectives of phase separation in synthetic biology.
Conclusions: Multivalent interactions implement phase separation in synthetic biology. Small molecules, light control and spontaneous interactions induce and regulate phase separation. The synthetic condensates are widely used in signal amplifications, designer orthogonally non-membrane-bound organelles, metabolic pathways, gene regulations, signaling transductions and controllable platforms. Studies on quantitative analysis, more standardized modules and precise spatiotemporal control of synthetic phase separation may promote the further development of this field.
A substantial amount of physical theories and biological experiments have been developed to uncover the underlying principles of phase separation in biology. The synthetic condensates through phase separation have been used to implement many specific functions in biological systems. In the future, more biomedical functions related to phase separation can be explored, more diseases triggered or accelerated by phase separation may be treated better, more artificial applications can be realized by synthetic condensates.
phase separation / synthetic biology / multivalent interaction / non-membrane-bound organelle / signaling transduction and amplification
[1] |
MitreaD. M. , Kriwacki, R. W.. Phase separation in biology; functional organization of a higher order. Cell Commun. Signal., 2016, 14
CrossRef
Google scholar
|
[2] |
HymanA. A., Weber, C. A. , Jülicher, F.. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol., 2014, 30
CrossRef
Google scholar
|
[3] |
LuzioJ. P., Pryor, P. R. , Bright, N. A.. Lysosomes: fusion and function. Nat. Rev. Mol. Cell Biol., 2007, 8
CrossRef
Google scholar
|
[4] |
FriedmanJ. R. , Nunnari, J.. Mitochondrial form and function. Nature, 2014, 505
CrossRef
Google scholar
|
[5] |
BoisvertF.-M., van Koningsbruggen, S., Navascués, J. , Lamond, A. I.. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol., 2007, 8
CrossRef
Google scholar
|
[6] |
BuchanJ. R. , Parker, R.. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell, 2009, 36
CrossRef
Google scholar
|
[7] |
DeckerC. J. , Parker, R.. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb. Perspect. Biol., 2012, 4
CrossRef
Google scholar
|
[8] |
BrangwynneP., C.R., EckmannS., C.A. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 2009, 324
CrossRef
Google scholar
|
[9] |
BoeynaemsL., S.Den Bosch. Protein phase separation: a new phase in cell biology. Trends Cell Biol., 2018, 28
CrossRef
Google scholar
|
[10] |
BananiS. F., Lee, H. O., Hyman, A. A. , Rosen, M. K.. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol., 2017, 18
CrossRef
Google scholar
|
[11] |
BerryJ., Brangwynne, C. P. , Haataja, M.. Physical principles of intracellular organization via active and passive phase transitions. Rep. Prog. Phys., 2018, 81
CrossRef
Google scholar
|
[12] |
WilsonE. B.. The structure of protoplasm. Science, 1899, 10
CrossRef
Google scholar
|
[13] |
TangL.. Liquid phase separation. Nat. Methods, 2019, 16
CrossRef
Google scholar
|
[14] |
ZhangH., Ji, X., Li, P., Liu, C., Lou, J., Wang, Z., Wen, W., Xiao, Y., Zhang, M. , Zhu, X.. Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci. China Life Sci., 2020, 63
CrossRef
Google scholar
|
[15] |
GoodrichJ. , Taatjes, D.. Transcription regulation enters a new phase. Nature, 2018, 558
|
[16] |
HarlenK. M. , Churchman, L. S.. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol., 2017, 18
CrossRef
Google scholar
|
[17] |
LuH., Yu, D., Hansen, A. S., Ganguly, S., Liu, R., Heckert, A., Darzacq, X. , Zhou, Q.. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature, 2018, 558
CrossRef
Google scholar
|
[18] |
WeiM.-T., Chang, Y.-C., Shimobayashi, S. F., Shin, Y., Strom, A. R. , Brangwynne, C. P.. Nucleated transcriptional condensates amplify gene expression. Nat. Cell Biol., 2020, 22
CrossRef
Google scholar
|
[19] |
ZaborowskaJ., Egloff, S. , Murphy, S.. The pol II CTD: new twists in the tail. Nat. Struct. Mol. Biol., 2016, 23
CrossRef
Google scholar
|
[20] |
BoijaA., A.R., KleinL., I.V., SabariH., B.C.and Hannett, Dall’AgneseM. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell, 2018, 175
CrossRef
Google scholar
|
[21] |
GuoE., Y.C., ManteigaE., J.R., HenningerM., J.K., SabariV.. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature, 2019, 572
CrossRef
Google scholar
|
[22] |
SabariR., B.A., Dall’AgneseL., A.J., BoijaM., A.V., KleinC.. Coactivator condensation at super-enhancers links phase separation and gene control. Science, 2018, 361
CrossRef
Google scholar
|
[23] |
ZuoL., Zhang, G., Massett, M., Cheng, J., Guo, Z., Wang, L., Gao, Y., Li, R., Huang, X., Li, P.. Loci-specific phase separation of FET fusion oncoproteins promotes gene transcription. Nat. Commun., 2021, 12
CrossRef
Google scholar
|
[24] |
ErdelF. , Rippe, K.. Formation of chromatin subcompartments by phase separation. Biophys. J., 2018, 114
CrossRef
Google scholar
|
[25] |
NarlikarG. J.. Phase-separation in chromatin organization. J. Biosci., 2020, 45
CrossRef
Google scholar
|
[26] |
PalikyrasS. , Papantonis, A.. Modes of phase separation affecting chromatin regulation. Open Biol., 2019, 9
CrossRef
Google scholar
|
[27] |
LarsonG., A.M., ElnatanJ., D.B., KeenenL., M.A., TrnkaJ. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature, 2017, 547
CrossRef
Google scholar
|
[28] |
StromA. R., Emelyanov, A. V., Mir, M., Fyodorov, D. V., Darzacq, X. , Karpen, G. H.. Phase separation drives heterochromatin domain formation. Nature, 2017, 547
CrossRef
Google scholar
|
[29] |
YoshizawaT., Nozawa, R. S., Jia, T. Z., Saio, T. , Mori, E.. Biological phase separation: cell biology meets biophysics. Biophys. Rev., 2020, 12
CrossRef
Google scholar
|
[30] |
GibsonA., B.K., DoolittleW., L.E., SchneiderW., M.K. Organization of chromatin by intrinsic and regulated phase separation. Cell, 2019, 179
CrossRef
Google scholar
|
[31] |
BeckerJ. S., Nicetto, D. , Zaret, K. S.. H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet., 2016, 32
CrossRef
Google scholar
|
[32] |
KilicS., Bachmann, A. L., Bryan, L. C. , Fierz, B.. Multivalency governs HP1α association dynamics with the silent chromatin state. Nat. Commun., 2015, 6
CrossRef
Google scholar
|
[33] |
WangL., Gao, Y., Zheng, X., Liu, C., Dong, S., Li, R., Zhang, G., Wei, Y., Qu, H., Li, Y.. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol. Cell, 2019, 76
CrossRef
Google scholar
|
[34] |
WeiC., Cheng, J., Zhou, B., Zhu, L., Khan, M. A., He, T., Zhou, S., He, J., Lu, X., Chen, H.. Tripartite motif containing 28 (TRIM28) promotes breast cancer metastasis by stabilizing TWIST1 protein. Sci. Rep., 2016, 6
CrossRef
Google scholar
|
[35] |
SanulliJ., S.W., TrnkaD., M.L., DharmarajanR., V.D., TibbleJ. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature, 2019, 575
CrossRef
Google scholar
|
[36] |
BannisterA. J., Zegerman, P., Partridge, J. F., Miska, E. A., Thomas, J. O., Allshire, R. C. , Kouzarides, T.. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 2001, 410
CrossRef
Google scholar
|
[37] |
GrewalS. I., Moazed, D.. Heterochromatin and epigenetic control of gene expression. Science, 2003, 301
CrossRef
Google scholar
|
[38] |
ZhangW., Liu, W., Jia, L., Chen, D., Chang, I., Lake, M., Bentolila, L. A. , Wang, C. Y.. Targeting KDM4A epigenetically activates tumor-cell-intrinsic immunity by inducing DNA replication stress. Mol. Cell, 2021, 81
CrossRef
Google scholar
|
[39] |
ShakyaA., Park, S., Rana, N. , King, J. T.. Liquid-liquid phase separation of histone proteins in cells: role in chromatin organization. Biophys. J., 2020, 118
CrossRef
Google scholar
|
[40] |
BrewerC. F., Miceli, M. C. , Baum, L. G.. Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr. Opin. Struct. Biol., 2002, 12
CrossRef
Google scholar
|
[41] |
CaseL. B., Ditlev, J. A. , Rosen, M. K.. Regulation of transmembrane signaling by phase separation. Annu. Rev. Biophys., 2019, 48
CrossRef
Google scholar
|
[42] |
CaseL. B., Zhang, X., Ditlev, J. A. , Rosen, M. K.. Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. Science, 2019, 363
CrossRef
Google scholar
|
[43] |
HoutmanC., J.L.. Binding specificity of multiprotein signaling complexes is determined by both cooperative interactions and affinity preferences. Biochemistry, 2004, 43
CrossRef
Google scholar
|
[44] |
HuangY. C., W.K., AlvarezK., S.Y. M., KondoH., Y.T. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science, 2019, 363
CrossRef
Google scholar
|
[45] |
KimS., Kalappurakkal, J. M., Mayor, S. , Rosen, M. K.. Phosphorylation of Nephrin induces phase separated domains that move through actomyosin contraction. Mol. Biol. Cell., 2019, 30
CrossRef
Google scholar
|
[46] |
DuM. , Chen, Z. J.. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science, 2018, 361
CrossRef
Google scholar
|
[47] |
YooH., Triandafillou, C. , Drummond, D. A.. Cellular sensing by phase separation: Using the process, not just the products. J. Biol. Chem., 2019, 294
CrossRef
Google scholar
|
[48] |
BurdetteD. L. , Vance, R. E.. STING and the innate immune response to nucleic acids in the cytosol. Nat. Immunol., 2013, 14
CrossRef
Google scholar
|
[49] |
AcunaC., Liu, X. , Südhof, T. C.. How to make an active zone: unexpected universal functional redundancy between RIMs and RIM-BPs. Neuron, 2016, 91
CrossRef
Google scholar
|
[50] |
MittelstaedtT., Alvaréz-Baron, E. , Schoch, S.. RIM proteins and their role in synapse function. Biol. Chem., 2010, 391
CrossRef
Google scholar
|
[51] |
WuX., Cai, Q., Shen, Z., Chen, X., Zeng, M., Du, S. , Zhang, M.. RIM and RIM-BP form presynaptic active-zone-like condensates via phase separation. Mol. Cell, 2019, 73
CrossRef
Google scholar
|
[52] |
ZengM., Chen, X., Guan, D., Xu, J., Wu, H., Tong, P. , Zhang, M.. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell, 2018, 174
CrossRef
Google scholar
|
[53] |
ZengM., Shang, Y., Araki, Y., Guo, T., Huganir, R. L. , Zhang, M.. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell, 2016, 166
CrossRef
Google scholar
|
[54] |
AguzziA. , Altmeyer, M.. Phase separation: linking cellular compartmentalization to disease. Trends Cell Biol., 2016, 26
CrossRef
Google scholar
|
[55] |
BhopatkarA. A., Uversky, V. N. , Rangachari, V.. Granulins modulate liquid-liquid phase separation and aggregation of prion-like C-terminal domain of the neurodegeneration-associated protein TDP-43. J. Biol., Chem., 2020, 295
CrossRef
Google scholar
|
[56] |
ConicellaA. E., Zerze, G. H., Mittal, J. , Fawzi, N. L.. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure, 2016, 24
CrossRef
Google scholar
|
[57] |
PatelO., A.Y., LeeM.. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell, 2015, 162
CrossRef
Google scholar
|
[58] |
AmbadipudiS., Biernat, J., Riedel, D., Mandelkow, E. , Zweckstetter, M.. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat. Commun., 2017, 8
CrossRef
Google scholar
|
[59] |
GustkeN., Trinczek, B., Biernat, J., Mandelkow, E.-M. , Mandelkow, E.. Domains of tau protein and interactions with microtubules. Biochemistry, 1994, 33
CrossRef
Google scholar
|
[60] |
WegmannM., S.E., EftekharzadehR.. Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J., 2018, 37
CrossRef
Google scholar
|
[61] |
Bergeron-SandovalW. Mechanisms and consequences of macromolecular phase separation. Cell, 2016, 165
CrossRef
Google scholar
|
[62] |
CableV., J.A., BrangwynneE.. Phase separation in biology and disease-a symposium report. Ann. N. Y. Acad. Sci., 2019, 1452
CrossRef
Google scholar
|
[63] |
ZbindenA., Pérez-Berlanga, M., De Rossi, P. , Polymenidou, M.. Phase separation and neurodegenerative diseases: A disturbance in the force. Dev. Cell, 2020, 55
CrossRef
Google scholar
|
[64] |
MutschlerH., Robinson, T., Tang, T. D. , Wegner, S.. Special issue on bottom-up synthetic biology. ChemBioChem, 2019, 20
CrossRef
Google scholar
|
[65] |
AndrianantoandroE., Basu, S., Karig, D. K. , Weiss, R.. Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol., 2006, 2
CrossRef
Google scholar
|
[66] |
SchwilleP.. Bottom-up synthetic biology: engineering in a tinkerer’s world. Science, 2011, 333
CrossRef
Google scholar
|
[67] |
BennerS. A. , Sismour, A. M.. Synthetic biology. Nat. Rev. Genet., 2005, 6
CrossRef
Google scholar
|
[68] |
Oparin, A. (1953) The Origin of Life. 2nd ed. New York: Dover
|
[69] |
PoudyalR. R., Pir Cakmak, F., Keating, C. D. , Bevilacqua, P. C.. Physical principles and extant biology reveal roles for RNA-containing membraneless compartments in origins of life chemistry. Biochemistry, 2018, 57
CrossRef
Google scholar
|
[70] |
HastingsR. L. , Boeynaems, S.. Designer condensates: A toolkit for the biomolecular architect. J. Mol. Biol., 2021, 433
CrossRef
Google scholar
|
[71] |
AlbertiS., Gladfelter, A. , Mittag, T.. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell, 2019, 176
CrossRef
Google scholar
|
[72] |
RibackA., J.C., ZhuM., L.W., FerrolinoT., M.W., TolbertP. Composition-dependent thermodynamics of intracellular phase separation. Nature, 2020, 581
CrossRef
Google scholar
|
[73] |
ShinY. , Brangwynne, C. P.. Liquid phase condensation in cell physiology and disease. Science, 2017, 357
CrossRef
Google scholar
|
[74] |
JonesR. , Weitz, D.. Soft Condensed Matter. Phys. Today, 2003, 56
|
[75] |
BabinchakW. M. , Surewicz, W. K.. Liquid-liquid phase separation and its mechanistic role in pathological protein aggregation. J. Mol. Biol., 2020, 432
CrossRef
Google scholar
|
[76] |
SunY., Zhao, K., Xia, W., Feng, G., Gu, J., Ma, Y., Gui, X., Zhang, X., Fang, Y., Sun, B.. The nuclear localization sequence mediates hnRNPA1 amyloid fibril formation revealed by cryoEM structure. Nat. Commun., 2020, 11
CrossRef
Google scholar
|
[77] |
KanaanN. M., Hamel, C., Grabinski, T. , Combs, B.. Liquid-liquid phase separation induces pathogenic tau conformations in vitro. Nat. Commun., 2020, 11
CrossRef
Google scholar
|
[78] |
AlbertiS.. Phase separation in biology. Curr. Biol., 2017, 27
CrossRef
Google scholar
|
[79] |
FranzmannM., T.S., JahnelW., M.V.. Phase separation of a yeast prion protein promotes cellular fitness. Science, 2018, 359
CrossRef
Google scholar
|
[80] |
NottJ., T.D., PetsalakiP., E.D.. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell, 2015, 57
CrossRef
Google scholar
|
[81] |
RuffK. M., Roberts, S., Chilkoti, A. , Pappu, R. V.. Advances in understanding stimulus-responsive phase behavior of intrinsically disordered protein polymers. J. Mol. Biol., 2018, 430
CrossRef
Google scholar
|
[82] |
MohammadiV. I., P.P. J., JonkergouwB. Controllable coacervation of recombinantly produced spider silk protein using kosmotropic salts. J. Colloid Interface Sci., 2020, 560
CrossRef
Google scholar
|
[83] |
DaoP., T.J., KolaitisP., R.-M.A. Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol. Cell., 2018, 69
CrossRef
Google scholar
|
[84] |
RaiA. K., Chen, J.-X., Selbach, M. , Pelkmans, L.. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature, 2018, 559
CrossRef
Google scholar
|
[85] |
BananiS. F., Rice, A. M., Peeples, W. B., Lin, Y., Jain, S., Parker, R. , Rosen, M. K.. Compositional control of phase-separated cellular bodies. Cell, 2016, 166
CrossRef
Google scholar
|
[86] |
MittagT. , Parker, R.. Multiple modes of protein–protein interactions promote RNP granule assembly. J. Mol. Biol., 2018, 430
CrossRef
Google scholar
|
[87] |
StattA., Casademunt, H., Brangwynne, C. , Panagiotopoulos, A.. Model for intrinsically disordered proteins with a strong dependence of liquid-liquid phase separation on sequence. Bull. Am. Phys. Soc., 2020, 152
|
[88] |
UverskyV. N.. Intrinsically disordered proteins in overcrowded milieu: Membrane-less organelles, phase separation, and intrinsic disorder. Curr. Opin. Struct. Biol., 2017, 44
CrossRef
Google scholar
|
[89] |
BrangwynneC. P., Tompa, P. , Pappu, R. V.. Polymer physics of intracellular phase transitions. Nat. Phys., 2015, 11
CrossRef
Google scholar
|
[90] |
Elbaum-GarfinkleC.-H., S.R., KimP. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl. Acad. Sci. USA, 2015, 112
CrossRef
Google scholar
|
[91] |
SmithJ., Calidas, D., Schmidt, H., Lu, T., Rasoloson, D. , Seydoux, G.. Spatial patterning of P granules by RNA-induced phase separation of the intrinsically-disordered protein MEG-3. eLife, 2016, 5
CrossRef
Google scholar
|
[92] |
WangS., J.O.. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell, 2018, 174
CrossRef
Google scholar
|
[93] |
RibackA., J.D., KatanskiL., C.V., Kear-ScottE., J.R., PilipenkoA. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell, 2017, 168
CrossRef
Google scholar
|
[94] |
ChongP. A., Vernon, R. M. , Forman-Kay, J. D.. RGG/RG motif regions in RNA binding and phase separation. J. Mol. Biol., 2018, 430
CrossRef
Google scholar
|
[95] |
ThandapaniP., O’Connor, T. R., Bailey, T. L. , Richard, S.. Defining the RGG/RG motif. Mol. Cell, 2013, 50
CrossRef
Google scholar
|
[96] |
ShinY., Berry, J., Pannucci, N., Haataja, M. P., Toettcher, J. E. , Brangwynne, C. P.. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell, 2017, 168
CrossRef
Google scholar
|
[97] |
DueberE., J.C., WuR., G.S., MalmircheginiJ., G.V., MoonL., T.D. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol., 2009, 27
CrossRef
Google scholar
|
[98] |
ReinkemeierC. D., Girona, G. E. , Lemke, E. A.. Designer membraneless organelles enable codon reassignment of selected mRNAs in eukaryotes. Science, 2019, 363
CrossRef
Google scholar
|
[99] |
MonahanH., Z.M., RyanA., V.N., JankeH., A.L., BurkeE.. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J., 2017, 36
CrossRef
Google scholar
|
[100] |
QamarJ., S.S., WangA., G.Q., RandleC.. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell, 2018, 173
CrossRef
Google scholar
|
[101] |
HanT. W., Kato, M., Xie, S., Wu, L. C., Mirzaei, H., Pei, J., Chen, M., Xie, Y., Allen, J., Xiao, G.. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell, 2012, 149
CrossRef
Google scholar
|
[102] |
KatoW., M.C., HanJ.. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell, 2012, 149
CrossRef
Google scholar
|
[103] |
MurakamiQ., T.S. K., QamarR., S.B., LinT., J.H.. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron, 2015, 88
CrossRef
Google scholar
|
[104] |
MurthyA. C., Dignon, G. L., Kan, Y., Zerze, G. H., Parekh, S. H., Mittal, J. , Fawzi, N. L.. Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nat. Struct. Mol. Biol., 2019, 26
CrossRef
Google scholar
|
[105] |
MurrayD. T., Kato, M., Lin, Y., Thurber, K. R., Hung, I., McKnight, S. L. , Tycko, R.. Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell, 2017, 171
CrossRef
Google scholar
|
[106] |
ZhaoE. M., Suek, N., Wilson, M. Z., Dine, E., Pannucci, N. L., Gitai, Z., Avalos, J. L. , Toettcher, J. E.. Light-based control of metabolic flux through assembly of synthetic organelles. Nat. Chem. Biol., 2019, 15
CrossRef
Google scholar
|
[107] |
VernonR. M. , Forman-Kay, J. D.. First-generation predictors of biological protein phase separation. Curr. Opin. Struct. Biol., 2019, 58
CrossRef
Google scholar
|
[108] |
HughesP., M.R., SawayaR., M.A., BoyerS. Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks. Science, 2018, 359
CrossRef
Google scholar
|
[109] |
KrainerJ., G.A., WelshR., T.A.. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat. Commun., 2021, 12
CrossRef
Google scholar
|
[110] |
PawlukA.. Breaking the Rules. Cell, 2018, 173
CrossRef
Google scholar
|
[111] |
FrazerI., C.A., StaplesV., M.D., KimH., Y.L., HirakawaJ.. Epigenetic cell fate in Candida albicans is controlled by transcription factor condensates acting at super-enhancer-like elements. Nat. Microbiol., 2020, 5
CrossRef
Google scholar
|
[112] |
BradyP., J.J., FarberJ., P.S., SekharJ., A.D.. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proc. Natl. Acad. Sci. USA, 2017, 114
CrossRef
Google scholar
|
[113] |
ReichheldS. E., Muiznieks, L. D., Keeley, F. W. , Sharpe, S.. Direct observation of structure and dynamics during phase separation of an elastomeric protein. Proc. Natl. Acad. Sci. USA, 2017, 114
CrossRef
Google scholar
|
[114] |
BanjadeS. , Rosen, M. K.. Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife, 2014, 3
CrossRef
Google scholar
|
[115] |
BanjadeS., Wu, Q., Mittal, A., Peeples, W. B., Pappu, R. V. , Rosen, M. K.. Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck. Proc. Natl. Acad. Sci. USA, 2015, 112
CrossRef
Google scholar
|
[116] |
LiV., P.S., BanjadeF.. Phase transitions in the assembly of multivalent signalling proteins. Nature, 2012, 483
CrossRef
Google scholar
|
[117] |
ShenB., Chen, Z., Yu, C., Chen, T., Shi, M. , Li, T.. Computational screening of biological phase-separating proteins. Genom. Proteom. Bioinform., 2021,
|
[118] |
LinY., Protter, D. S., Rosen, M. K. , Parker, R.. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell, 2015, 60
CrossRef
Google scholar
|
[119] |
WoolfsonD. N., Bartlett, G. J., Burton, A. J., Heal, J. W., Niitsu, A., Thomson, A. R. , Wood, C. W.. De novo protein design: how do we expand into the universe of possible protein structures?. Curr. Opin. Struct. Biol., 2015, 33
CrossRef
Google scholar
|
[120] |
HuangY., P.-S.L., OberdorferM.. High thermodynamic stability of parametrically designed helical bundles. Science, 2014, 346
CrossRef
Google scholar
|
[121] |
ThomsonA. R., Wood, C. W., Burton, A. J., Bartlett, G. J., Sessions, R. B., Brady, R. L. , Woolfson, D. N.. Computational design of water-soluble α-helical barrels. Science, 2014, 346
CrossRef
Google scholar
|
[122] |
ZhangR., Q.B. Visualizing dynamics of cell signaling in vivo with a phase separation-based kinase reporter. Mol. Cell, 2018, 69
CrossRef
Google scholar
|
[123] |
SchusterS., B.H., ReedN., E.M., ParthasarathyG., R.C., JahnkeA. Controllable protein phase separation and modular recruitment to form responsive membraneless organelles. Nat. Commun., 2018, 9
CrossRef
Google scholar
|
[124] |
KolarK. , Weber, W.. Synthetic biological approaches to optogenetically control cell signaling. Curr. Opin. Biotechnol., 2017, 47
CrossRef
Google scholar
|
[125] |
TangL.. Optogenetic tools light up phase separation. Nat. Methods, 2019, 16
CrossRef
Google scholar
|
[126] |
LiY.-J., Stark, J. M., Chen, D. J., Ann, D. K. , Chen, Y.. Role of SUMO: SIM-mediated protein-protein interaction in non-homologous end joining. Oncogene, 2010, 29
CrossRef
Google scholar
|
[127] |
HusnjakK., Keiten-Schmitz, J. , Müller, S.. Identification and characterization of SUMO-SIM interactions. Methods Mol. Biol., 2016, 1475
CrossRef
Google scholar
|
[128] |
ParkR., S.-Y.C. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 2009, 324
|
[129] |
YinP., Fan, H., Hao, Q., Yuan, X., Wu, D., Pang, Y., Yan, C., Li, W., Wang, J. , Yan, N.. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat. Struct. Mol. Biol., 2009, 16
CrossRef
Google scholar
|
[130] |
LumbaS., Cutler, S. , McCourt, P.. Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions. Annu. Rev. Cell Dev. Biol., 2010, 26
CrossRef
Google scholar
|
[131] |
WheelerJ., R.O., LeeN., H.C. Small molecules for modulating protein driven liquid-liquid phase separation in treating neurodegenerative disease. bioRxiv, 2019,
CrossRef
Google scholar
|
[132] |
YangX., Jost, A. P.-T., Weiner, O. D. , Tang, C.. A light-inducible organelle-targeting system for dynamically activating and inactivating signaling in budding yeast. Mol. Biol. Cell, 2013, 24
CrossRef
Google scholar
|
[133] |
BrachaD., Walls, M. T., Wei, M.-T., Zhu, L., Kurian, M., Avalos, J. L., Toettcher, J. E. , Brangwynne, C. P.. Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell, 2018, 175
CrossRef
Google scholar
|
[134] |
DineE., Gil, A. A., Uribe, G., Brangwynne, C. P. , Toettcher, J. E.. Protein phase separation provides long-term memory of transient spatial stimuli. Cell Syst., 2018, 6
CrossRef
Google scholar
|
[135] |
ShinS., Y.W., ChangS., Y.-C.P. Liquid nuclear condensates mechanically sense and restructure the genome. Cell, 2018, 175
CrossRef
Google scholar
|
[136] |
SchneiderN., Wieland, F.-G., Kong, D., Fischer, A. A. M., Hörner, M., Timmer, J., Ye, H. , Weber, W.. Liquid-liquid phase separation of light-inducible transcription factors increases transcription activation in mammalian cells and mice. Sci. Adv., 2021, 7
CrossRef
Google scholar
|
[137] |
BuckleyC. E., Moore, R. E., Reade, A., Goldberg, A. R., Weiner, O. D. , Clarke, J. D. W.. Reversible optogenetic control of subcellular protein localization in a live vertebrate embryo. Dev. Cell, 2016, 36
CrossRef
Google scholar
|
[138] |
ReedE. H., Schuster, B. S., Good, M. C. , Hammer, D. A.. SPLIT: stable protein coacervation using a light induced transition. ACS Synth. Biol., 2020, 9
CrossRef
Google scholar
|
[139] |
DolginE.. Cell biology’s new phase. Nature, 2018, 555
CrossRef
Google scholar
|
[140] |
ZhaoY. G. , Zhang, H.. Phase separation in membrane biology: The interplay between membrane-bound organelles and membraneless condensates. Dev. Cell, 2020, 55
CrossRef
Google scholar
|
[141] |
MaW., MayrC.. A membraneless organelle associated with the endoplasmic reticulum enables 3′ UTR-mediated protein-protein interactions. Cell, 2018, 175
CrossRef
Google scholar
|
[142] |
ProuteauM. , Loewith, R.. Regulation of cellular metabolism through phase separation of enzymes. Biomolecules, 2018, 8
CrossRef
Google scholar
|
[143] |
CastellanaM., Wilson, M. Z., Xu, Y., Joshi, P., Cristea, I. M., Rabinowitz, J. D., Gitai, Z. , Wingreen, N. S.. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat. Biotechnol., 2014, 32
CrossRef
Google scholar
|
[144] |
LiuM., He, S., Cheng, L., Qu, J. , Xia, J.. Phase-separated multienzyme biosynthesis. Biomacromolecules, 2020, 21
CrossRef
Google scholar
|
[145] |
PiccinnoR., Minneker, V. , Roukos, V.. 53BP1-DNA repair enters a new liquid phase. EMBO J., 2019, 38
CrossRef
Google scholar
|
[146] |
JacksonS. P. , Bartek, J.. The DNA-damage response in human biology and disease. Nature, 2009, 461
CrossRef
Google scholar
|
[147] |
PanierS. , Boulton, S. J.. Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol., 2014, 15
CrossRef
Google scholar
|
[148] |
SchwertmanP., Bekker-Jensen, S. , Mailand, N.. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat. Rev. Mol. Cell Biol., 2016, 17
CrossRef
Google scholar
|
[149] |
WilsonM. D. , Durocher, D.. Reading chromatin signatures after DNA double-strand breaks. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2017, 372
CrossRef
Google scholar
|
[150] |
KilicS., Lezaja, A., Gatti, M., Bianco, E., Michelena, J., Imhof, R. , Altmeyer, M.. Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments. EMBO J., 2019, 38
CrossRef
Google scholar
|
[151] |
Pessina
CrossRef
Google scholar
|
[152] |
LieberM. R.. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem., 2010, 79
CrossRef
Google scholar
|
[153] |
HeyerW.-D., Ehmsen, K. T. , Liu, J.. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet., 2010, 44
CrossRef
Google scholar
|
[154] |
ChapmanJ. R., Taylor, M. R. , Boulton, S. J.. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell, 2012, 47
CrossRef
Google scholar
|
[155] |
GossenM. , Bujard, H.. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA, 1992, 89
CrossRef
Google scholar
|
[156] |
SimonJ. R., Eghtesadi, S. A., Dzuricky, M., You, L. , Chilkoti, A.. Engineered ribonucleoprotein granules inhibit translation in protocells. Mol. Cell, 2019, 75
CrossRef
Google scholar
|
[157] |
McDanielJ. R., Radford, D. C. , Chilkoti, A.. A unified model for de novo design of elastin-like polypeptides with tunable inverse transition temperatures. Biomacromolecules, 2013, 14
CrossRef
Google scholar
|
[158] |
RauscherS. , Pomès, R.. The liquid structure of elastin. eLife, 2017, 6
CrossRef
Google scholar
|
[159] |
RobertsS., Dzuricky, M. , Chilkoti, A.. Elastin-like polypeptides as models of intrinsically disordered proteins. FEBS Lett., 2015, 589
CrossRef
Google scholar
|
[160] |
DuanT. , Li, H.. In situ phase transition of elastin-like polypeptide chains regulates thermoresponsive properties of elastomeric protein-based hydrogels. Biomacromolecules, 2020, 21
CrossRef
Google scholar
|
[161] |
TruongA. T., Hamada, K., Yamada, Y., Guo, H., Kikkawa, Y., Okamoto, C. T., MacKay, J. A. , Nomizu, M.. Evaluation of extracellular matrix mimetic laminin bioactive peptide and elastin-like polypeptide. FASEB J., 2020, 34
CrossRef
Google scholar
|
[162] |
ChungH. K., Zou, X., Bajar, B. T., Brand, V. R., Huo, Y., Alcudia, J. F., Ferrell, J. E. Jr , Lin, M. Z.. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science, 2019, 364
CrossRef
Google scholar
|
[163] |
RickertR. C.. New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat. Rev. Immunol., 2013, 13
CrossRef
Google scholar
|
[164] |
StricklandM., D.R., LinL.. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods, 2012, 9
CrossRef
Google scholar
|
[165] |
McSwiggenD. T., Mir, M., Darzacq, X. , Tjian, R.. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev., 2019, 33
CrossRef
Google scholar
|
[166] |
NarayananA., Meriin, A., Andrews, J. O., Spille, J.-H., Sherman, M. Y. , Cisse, I. I.. A first order phase transition mechanism underlies protein aggregation in mammalian cells. eLife, 2019, 8
CrossRef
Google scholar
|
[167] |
JawerthL. M., Ijavi, M., Ruer, M., Saha, S., Jahnel, M., Hyman, A. A., Jülicher, F. , Fischer-Friedrich, E.. Salt-dependent rheology and surface tension of protein condensates using optical traps. Phys. Rev. Lett., 2018, 121
CrossRef
Google scholar
|
[168] |
YangX., Wei, J., Wang, Y., Yang, C., Zhao, S., Li, C., Dong, Y., Bai, K., Li, Y., Teng, H.. A genetically encoded protein polymer for uranyl binding and extraction based on the SpyTag-SpyCatcher chemistry. ACS Synth. Biol., 2018, 7
CrossRef
Google scholar
|
[169] |
VernonR. M., Chong, P. A., Tsang, B., Kim, T. H., Bah, A., Farber, P., Lin, H. , Forman-Kay, J. D.. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. eLife, 2018, 7
CrossRef
Google scholar
|
[170] |
MartinE. W. , Mittag, T.. Relationship of sequence and phase separation in protein low-complexity regions. Biochemistry, 2018, 57
CrossRef
Google scholar
|
[171] |
NingW., Guo, Y., Lin, S., Mei, B., Wu, Y., Jiang, P., Tan, X., Zhang, W., Chen, G., Peng, D.. DrLLPS: a data resource of liquid-liquid phase separation in eukaryotes. Nucleic Acids Res., 2020, 48
CrossRef
Google scholar
|
[172] |
LiQ., Peng, X., Li, Y., Tang, W., Zhu, J., Huang, J., Qi, Y. , Zhang, Z.. LLPSDB: a database of proteins undergoing liquid-liquid phase separation in vitro. Nucleic Acids Res., 2020, 48
CrossRef
Google scholar
|
[173] |
YouK., Huang, Q., Yu, C., Shen, B., Sevilla, C., Shi, M., Hermjakob, H., Chen, Y. , Li, T.. PhaSepDB: a database of liquid-liquid phase separation related proteins. Nucleic Acids Res., 2020, 48
CrossRef
Google scholar
|
[174] |
MészárosP.. PhaSePro: the database of proteins driving liquid-liquid phase separation. Nucleic Acids Res, 2020, 48
|
[175] |
SunT., Li, Q., Xu, Y., Zhang, Z., Lai, L. , Pei, J.. Prediction of liquid-liquid phase separation proteins using machine learning. bioRxiv, 2019,
CrossRef
Google scholar
|
[176] |
FericS., M.M., VaidyaM., N.W., HarmonV., T.P. Coexisting liquid phases underlie nucleolar subcompartments. Cell, 2016, 165
CrossRef
Google scholar
|
[177] |
ZhuL. , Brangwynne, C. P.. Nuclear bodies: the emerging biophysics of nucleoplasmic phases. Curr. Opin. Cell Biol., 2015, 34
CrossRef
Google scholar
|
[178] |
GogliaA. G. , Toettcher, J. E.. A bright future: optogenetics to dissect the spatiotemporal control of cell behavior. Curr. Opin. Chem. Biol., 2019, 48
CrossRef
Google scholar
|
[179] |
WilsonM. Z., Ravindran, P. T., Lim, W. A. , Toettcher, J. E.. Tracing information flow from Erk to target gene induction reveals mechanisms of dynamic and combinatorial control. Mol. cell, 2017, 67
CrossRef
Google scholar
|
[180] |
Krawczyk
CrossRef
Google scholar
|
/
〈 | 〉 |