CELLO: a longitudinal data analysis toolbox untangling cancer evolution

Biaobin Jiang , Dong Song , Quanhua Mu , Jiguang Wang

Quant. Biol. ›› 2020, Vol. 8 ›› Issue (3) : 256 -266.

PDF (1509KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (3) : 256 -266. DOI: 10.1007/s40484-020-0218-1
PROTOCOL AND TUTORIAL
PROTOCOL AND TUTORIAL

CELLO: a longitudinal data analysis toolbox untangling cancer evolution

Author information +
History +
PDF (1509KB)

Abstract

The complex pattern of cancer evolution poses a huge challenge to precision oncology. Longitudinal sequencing of tumor samples allows us to monitor the dynamics of mutations that occurred during this clonal evolution process. Here, we present a versatile toolbox, namely CELLO (Cancer EvoLution for LOngitudinal data), accompanied with a step-by-step tutorial, to exemplify how to profile, analyze and visualize the dynamic change of somatic mutational landscape using longitudinal genomic sequencing data. Moreover, we customize the hypermutation detection module in CELLO to adapt targeted-DNA and whole-transcriptome sequencing data, and verify the extensive applicability of CELLO in published longitudinal datasets from brain, bladder and breast cancers. The entire tutorial and reusable programs in MATLAB, R and docker versions are open access at https://github.com/WangLabHKUST/CELLO.

Graphical abstract

Keywords

cancer evolution / genomics / longitudinal sequencing / bioinformatics

Cite this article

Download citation ▾
Biaobin Jiang, Dong Song, Quanhua Mu, Jiguang Wang. CELLO: a longitudinal data analysis toolbox untangling cancer evolution. Quant. Biol., 2020, 8(3): 256-266 DOI:10.1007/s40484-020-0218-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang, J., Cazzato, E., Ladewig, E., Frattini, V., Rosenbloom, D. I., Zairis, S., Abate, F., Liu, Z., Elliott, O., Shin, Y. J., (2016) Clonal evolution of glioblastoma under therapy. Nat. Genet., 48, 768–776

[2]

Hu, H., Mu, Q., Bao, Z., Chen, Y., Liu, Y., Chen, J., Wang, K., Wang, Z., Nam, Y., Jiang, B., (2018) Mutational landscape of secondary glioblastoma guides met-targeted trial in brain tumor. Cell, 175, 1665–1678.e18

[3]

Lamy, P., Nordentoft, I., Birkenkamp-Demtröder, K., Thomsen, M. B. H., Villesen, P., Vang, S., Hedegaard, J., Borre, M., Jensen, J. B., Høyer, S., (2016) Paired exome analysis reveals clonal evolution and potential therapeutic targets in urothelial carcinoma. Cancer Res., 76, 5894–5906

[4]

Yates, L. R., Knappskog, S., Wedge, D., Farmery, J. H. R., Gonzalez, S., Martincorena, I., Alexandrov, L. B., Van Loo, P., Haugland, H. K., Lilleng, P. K., (2017) Genomic evolution of breast cancer metastasis and relapse. Cancer Cell, 32, 169–184.e7

[5]

Andrews, S. (2010) A Quality Control Tool for High Throughput Sequence Data.

[6]

Li, H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997

[7]

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. and Gingeras, T. R. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15–21

[8]

Xu, H., Luo, X., Qian, J., Pang, X., Song, J., Qian, G., Chen, J. and Chen, S. (2012) FastUniq: a fast de novo duplicates removal tool for paired short reads. PLoS One, 7, e52249–e52249

[9]

Liao, Y., Smyth, G. K. and Shi, W. (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30, 923–930

[10]

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L. and Pachter, L. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc., 7, 562–578

[11]

Li, B. and Dewey, C. N. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323

[12]

Trifonov, V., Pasqualucci, L., Tiacci, E., Falini, B. and Rabadan, R. (2013) SAVI: a statistical algorithm for variant frequency identification. BMC Syst. Biol., 7, S2

[13]

Magi, A., Tattini, L., Cifola, I., D’Aurizio, R., Benelli, M., Mangano, E., Battaglia, C., Bonora, E., Kurg, A., Seri, M., (2013) EXCAVATOR: detecting copy number variants from whole-exome sequencing data. Genome Biol., 14, R120

[14]

Talevich, E., Shain, A. H., Botton, T. and Bastian, B. C. (2016) Cnvkit: Genome-wide copy number detection and visualization from targeted DNA sequencing. PLOS Comput. Biol., 12, e1004873

[15]

Mu, Q., and Wang, J. (2019) Cnape: A machine learning method for copy number alteration prediction from gene expression. IEEE/ACM Trans. Comput. Biol. Bioinform., doi:10.1109/TCBB.2019.2944827

[16]

Iyer, M. K., Chinnaiyan, A. M. and Maher, C. A. (2011) ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics, 27, 2903–2904

[17]

Haas, B., Dobin, A., Stransky, N., Li, B., Yang, X., Tickle, T., Bankapur, A., Ganote, C., Doak, T. and Pochet, N. (2017) Star-fusion: Fast and accurate fusion transcript detection from RNA-seq. bioRxiv, 120295

[18]

Abate, F., Zairis, S., Ficarra, E., Acquaviva, A., Wiggins, C. H., Frattini, V., Lasorella, A., Iavarone, A., Inghirami, G. and Rabadan, R. (2014) Pegasus: a comprehensive annotation and prediction tool for detection of driver gene fusions in cancer. BMC Syst. Biol., 8, 97

[19]

Cingolani, P., Platts, A., Wang, L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X. and Ruden, D. M. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 6, 80–92

[20]

Quinlan, A. R. (2014) Bedtools: The Swiss-army tool for genome feature analysis. Curr. Protoc. Bioinformatics, 47, 11.12.1–11.12. 34

[21]

Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. and Stratton, M. R. (2013) Deciphering signatures of mutational processes operative in human cancer. Cell Rep., 3, 246–259

[22]

Davis, A., Gao, R. and Navin, N. (2017) Tumor evolution: Linear, branching, neutral or punctuated? BBA. Rev. Can., 1867, 151–161

[23]

Wang, J., Khiabanian, H., Rossi, D., Fabbri, G., Gattei, V., Forconi, F., Laurenti, L., Marasca, R., Del Poeta, G., Foà R., (2014) Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia. eLife, 3, e02869

[24]

Gerlinger, M., Horswell, S., Larkin, J., Rowan, A. J., Salm, M. P., Varela, I., Fisher, R., McGranahan, N., Matthews, N., Santos, C. R., (2014) Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet., 46, 225–233

[25]

Turajlic, S., Xu, H., Litchfield, K., Rowan, A., Horswell, S., Chambers, T., O’Brien, T., Lopez, J. I., Watkins, T. B. K., Nicol, D., , (2018) Deterministic evolutionary trajectories influence primary tumor growth: Tracerx renal. Cell, 173, 595–610.e11

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1509KB)

1916

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/