CELLO: a longitudinal data analysis toolbox untangling cancer evolution

Biaobin Jiang, Dong Song, Quanhua Mu, Jiguang Wang

PDF(1509 KB)
PDF(1509 KB)
Quant. Biol. ›› 2020, Vol. 8 ›› Issue (3) : 256-266. DOI: 10.1007/s40484-020-0218-1
PROTOCOL AND TUTORIAL
PROTOCOL AND TUTORIAL

CELLO: a longitudinal data analysis toolbox untangling cancer evolution

Author information +
History +

Abstract

The complex pattern of cancer evolution poses a huge challenge to precision oncology. Longitudinal sequencing of tumor samples allows us to monitor the dynamics of mutations that occurred during this clonal evolution process. Here, we present a versatile toolbox, namely CELLO (Cancer EvoLution for LOngitudinal data), accompanied with a step-by-step tutorial, to exemplify how to profile, analyze and visualize the dynamic change of somatic mutational landscape using longitudinal genomic sequencing data. Moreover, we customize the hypermutation detection module in CELLO to adapt targeted-DNA and whole-transcriptome sequencing data, and verify the extensive applicability of CELLO in published longitudinal datasets from brain, bladder and breast cancers. The entire tutorial and reusable programs in MATLAB, R and docker versions are open access at https://github.com/WangLabHKUST/CELLO.

Graphical abstract

Keywords

cancer evolution / genomics / longitudinal sequencing / bioinformatics

Cite this article

Download citation ▾
Biaobin Jiang, Dong Song, Quanhua Mu, Jiguang Wang. CELLO: a longitudinal data analysis toolbox untangling cancer evolution. Quant. Biol., 2020, 8(3): 256‒266 https://doi.org/10.1007/s40484-020-0218-1

References

[1]
Wang, J., Cazzato, E., Ladewig, E., Frattini, V., Rosenbloom, D. I., Zairis, S., Abate, F., Liu, Z., Elliott, O., Shin, Y. J., (2016) Clonal evolution of glioblastoma under therapy. Nat. Genet., 48, 768–776
CrossRef Pubmed Google scholar
[2]
Hu, H., Mu, Q., Bao, Z., Chen, Y., Liu, Y., Chen, J., Wang, K., Wang, Z., Nam, Y., Jiang, B., (2018) Mutational landscape of secondary glioblastoma guides met-targeted trial in brain tumor. Cell, 175, 1665–1678.e18
CrossRef Pubmed Google scholar
[3]
Lamy, P., Nordentoft, I., Birkenkamp-Demtröder, K., Thomsen, M. B. H., Villesen, P., Vang, S., Hedegaard, J., Borre, M., Jensen, J. B., Høyer, S., (2016) Paired exome analysis reveals clonal evolution and potential therapeutic targets in urothelial carcinoma. Cancer Res., 76, 5894–5906
CrossRef Pubmed Google scholar
[4]
Yates, L. R., Knappskog, S., Wedge, D., Farmery, J. H. R., Gonzalez, S., Martincorena, I., Alexandrov, L. B., Van Loo, P., Haugland, H. K., Lilleng, P. K., (2017) Genomic evolution of breast cancer metastasis and relapse. Cancer Cell, 32, 169–184.e7
CrossRef Pubmed Google scholar
[5]
Andrews, S. (2010) A Quality Control Tool for High Throughput Sequence Data.
[6]
Li, H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997
[7]
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. and Gingeras, T. R. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15–21
CrossRef Pubmed Google scholar
[8]
Xu, H., Luo, X., Qian, J., Pang, X., Song, J., Qian, G., Chen, J. and Chen, S. (2012) FastUniq: a fast de novo duplicates removal tool for paired short reads. PLoS One, 7, e52249–e52249
CrossRef Pubmed Google scholar
[9]
Liao, Y., Smyth, G. K. and Shi, W. (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30, 923–930
CrossRef Pubmed Google scholar
[10]
Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L. and Pachter, L. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc., 7, 562–578
CrossRef Pubmed Google scholar
[11]
Li, B. and Dewey, C. N. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323
CrossRef Pubmed Google scholar
[12]
Trifonov, V., Pasqualucci, L., Tiacci, E., Falini, B. and Rabadan, R. (2013) SAVI: a statistical algorithm for variant frequency identification. BMC Syst. Biol., 7, S2
CrossRef Pubmed Google scholar
[13]
Magi, A., Tattini, L., Cifola, I., D’Aurizio, R., Benelli, M., Mangano, E., Battaglia, C., Bonora, E., Kurg, A., Seri, M., (2013) EXCAVATOR: detecting copy number variants from whole-exome sequencing data. Genome Biol., 14, R120
CrossRef Pubmed Google scholar
[14]
Talevich, E., Shain, A. H., Botton, T. and Bastian, B. C. (2016) Cnvkit: Genome-wide copy number detection and visualization from targeted DNA sequencing. PLOS Comput. Biol., 12, e1004873
CrossRef Pubmed Google scholar
[15]
Mu, Q., and Wang, J. (2019) Cnape: A machine learning method for copy number alteration prediction from gene expression. IEEE/ACM Trans. Comput. Biol. Bioinform., doi:10.1109/TCBB.2019.2944827
[16]
Iyer, M. K., Chinnaiyan, A. M. and Maher, C. A. (2011) ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics, 27, 2903–2904
CrossRef Pubmed Google scholar
[17]
Haas, B., Dobin, A., Stransky, N., Li, B., Yang, X., Tickle, T., Bankapur, A., Ganote, C., Doak, T. and Pochet, N. (2017) Star-fusion: Fast and accurate fusion transcript detection from RNA-seq. bioRxiv, 120295
[18]
Abate, F., Zairis, S., Ficarra, E., Acquaviva, A., Wiggins, C. H., Frattini, V., Lasorella, A., Iavarone, A., Inghirami, G. and Rabadan, R. (2014) Pegasus: a comprehensive annotation and prediction tool for detection of driver gene fusions in cancer. BMC Syst. Biol., 8, 97
CrossRef Pubmed Google scholar
[19]
Cingolani, P., Platts, A., Wang, L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X. and Ruden, D. M. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 6, 80–92
CrossRef Pubmed Google scholar
[20]
Quinlan, A. R. (2014) Bedtools: The Swiss-army tool for genome feature analysis. Curr. Protoc. Bioinformatics, 47, 11.12.1–11.12. 34
CrossRef Pubmed Google scholar
[21]
Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. and Stratton, M. R. (2013) Deciphering signatures of mutational processes operative in human cancer. Cell Rep., 3, 246–259
CrossRef Pubmed Google scholar
[22]
Davis, A., Gao, R. and Navin, N. (2017) Tumor evolution: Linear, branching, neutral or punctuated? BBA. Rev. Can., 1867, 151–161
[23]
Wang, J., Khiabanian, H., Rossi, D., Fabbri, G., Gattei, V., Forconi, F., Laurenti, L., Marasca, R., Del Poeta, G., Foà, R., (2014) Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia. eLife, 3, e02869
CrossRef Pubmed Google scholar
[24]
Gerlinger, M., Horswell, S., Larkin, J., Rowan, A. J., Salm, M. P., Varela, I., Fisher, R., McGranahan, N., Matthews, N., Santos, C. R., (2014) Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet., 46, 225–233
CrossRef Pubmed Google scholar
[25]
Turajlic, S., Xu, H., Litchfield, K., Rowan, A., Horswell, S., Chambers, T., O’Brien, T., Lopez, J. I., Watkins, T. B. K., Nicol, D., , (2018) Deterministic evolutionary trajectories influence primary tumor growth: Tracerx renal. Cell, 173, 595–610.e11
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials and corresponding software are available online at https://github.com/WangLabHKUST/CELLO.

AUTHOR CONTRIBUTIONS

J.W. conceptualized the project. B.J. reimplemented the MATLAB version of CELLO upon J.W.’s scripts used in the work published on Nature Genetics in 2016. D.S. developed the R package of CELLO, and Q.M. developed the docker for the R package. All authors have written and approved the manuscript.

ACKNOWLEDGEMENTS

This work is supported by the grants from the National Natural Science Foundation of China (31922088), Research Grant Council (N_HKUST606/17, 26102719, C7065-18GF, C4039-19GF), Innovation and Technology Commission (ITCPD/17-9, ITS/480/18FP), and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (SMSEGL20SC01).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Biaobin Jiang, Dong Song, Quanhua Mu and Jiguang Wang declare that they have no conflict of interests.
The article does not contain any human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1509 KB)

Accesses

Citations

Detail

Sections
Recommended

/