A model of NSCLC microenvironment predicts optimal receptor targets

Chuang Han , Yu Wu

Quant. Biol. ›› 2019, Vol. 7 ›› Issue (2) : 147 -161.

PDF (1334KB)
Quant. Biol. ›› 2019, Vol. 7 ›› Issue (2) : 147 -161. DOI: 10.1007/s40484-019-0171-z
RESEARCH ARTICLE
RESEARCH ARTICLE

A model of NSCLC microenvironment predicts optimal receptor targets

Author information +
History +
PDF (1334KB)

Abstract

Background: Tumor microenvironment plays an essential role in the growth of malignancy. Understanding how tumor cells co-evolve with tumor-associated immune cells and stromal cells is important for tumor treatment.

Methods: In this paper, we propose a logistic population dynamics model for quantifying the intercellular signaling network in non-small-cell lung cancer (NSCLC). The model describes the evolutionary dynamics of cells and signaling proteins and was used to predict effective receptor targets through combination strategy analysis. Then, we optimized a multi-target strategy analysis algorithm that was verified by applying it to virtual patients with heterogeneous conditions. Furthermore, to deal with acquired resistance which was commonly observed in patients with NSCLC, we proposed a novel targeting strategy — tracking targeted therapy, to optimize the treatment by improving the therapeutic strategy periodically.

Results: The synergistic effect when inhibiting multiple signaling pathways may help significantly retard carcinogenic processes associated with disease progression, compared with suppression of a single signaling pathway. While traditional treatment (surgery, radiotherapy and chemotherapy) tends to attack tumor cells directly, the multi-target therapy we suggested here is aimed to inhibit the development of tumor by emasculating the relative competitive advantages of tumor cells and promoting that of normal cells.

Conclusion: The combination of traditional and targeted therapy, as an interesting experiment, was significantly more effective in treatment of virtual patients due to a clear complementary relationship between the two therapeutic schemes.

Graphical abstract

Keywords

non-small-cell lung cancer / tumor microenvironment / intercellular signaling network / logistic population dynamics / drug resistance / multi-target therapy

Cite this article

Download citation ▾
Chuang Han, Yu Wu. A model of NSCLC microenvironment predicts optimal receptor targets. Quant. Biol., 2019, 7(2): 147-161 DOI:10.1007/s40484-019-0171-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jemal, A., Ward, E. M., Johnson, C. J., Cronin, K. A., Ma, J., Ryerson, B., Mariotto, A., Lake, A. J., Wilson, R., Sherman, R. L., (2017) Annual Report to the Nation on the Status of Cancer, 1975-2014, Featuring Survival. J. Natl. Cancer Inst., 109, 22

[2]

Langer, C. J., Besse, B., Gualberto, A., Brambilla, E. and Soria, J.-C. (2010) The evolving role of histology in the management of advanced non-small-cell lung cancer. J. Clin. Oncol., 28, 5311–5320

[3]

Leong, D., Rai, R., Nguyen, B., Lee, A. and Yip, D. (2014) Advances in adjuvant systemic therapy for non-small-cell lung cancer. World J. Clin. Oncol., 5, 633–645

[4]

Weinberg, R. A. (2008) Coevolution in the tumor microenvironment. Nat. Genet., 40, 494–495

[5]

Villanueva, M. T. (2014) Microenvironment: the new midfielders in the tumour microenvironment. Nat. Rev. Cancer, 14, 765

[6]

Pietras, K. and Ostman, A. (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp. Cell Res., 316, 1324–1331

[7]

El-Nikhely, N., Larzabal, L., Seeger, W., Calvo, A. and Savai, R. (2012) Tumor-stromal interactions in lung cancer: novel candidate targets for therapeutic intervention. Expert Opin. Investig. Drugs, 21, 1107–1122

[8]

Lee, G., Walser, T. C. and Dubinett, S. M. (2009) Chronic inflammation, chronic obstructive pulmonary disease, and lung cancer. Curr. Opin. Pulm. Med., 15, 303–307

[9]

Sautès-Fridman, C., Cherfils-Vicini, J., Damotte, D., Fisson, S., Fridman, W. H., Cremer, I. and Dieu-Nosjean, M.-C. (2011) Tumor microenvironment is multifaceted. Cancer Metastasis Rev., 30, 13–25

[10]

Saffiotti, U., Daniel, L. N., Mao, Y., Shi, X., Williams, A. O. and Kaighn, M. E. (1994) Mechanisms of carcinogenesis by crystalline silica in relation to oxygen radicals. Environ. Health Perspect., 102, 159–163

[11]

Coggins, C. R. E. (2010) A further review of inhalation studies with cigarette smoke and lung cancer in experimental animals, including transgenic mice. Inhal. Toxicol., 22, 974–983

[12]

Druker, B. J., Talpaz, M., Resta, D. J., Peng, B., Buchdunger, E., Ford, J. M., Lydon, N. B., Kantarjian, H., Capdeville, R., Ohno-Jones, S., (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med., 344, 1031–1037

[13]

Pennell, N. A. and Lynch, T. J. Jr. (2009) Combined inhibition of the VEGFR and EGFR signaling pathways in the treatment of NSCLC. Oncologist, 14, 399–411

[14]

Sandler, A., Gray, R., Perry, M. C., Brahmer, J., Schiller, J. H., Dowlati, A., Lilenbaum, R. and Johnson, D. H. (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med., 355, 2542–2550

[15]

Zou, W. (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer, 5, 263–274

[16]

Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., Lindeman, N., Gale, C.-M., Zhao, X., Christensen, J., (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 316, 1039–1043

[17]

Yao, Z., Fenoglio, S., Gao, D. C., Camiolo, M., Stiles, B., Lindsted, T., Schlederer, M., Johns, C., Altorki, N., Mittal, V., (2010) TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc. Natl. Acad. Sci. USA, 107, 15535–15540

[18]

Lange, J. M. A. (1995) Triple combinations: present and future. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 10, S77–S82

[19]

Ward, J. P. and King, J. R. (1997) Mathematical modelling of avascular-tumour growth. IMA J. Math. Appl. Med. Biol., 14, 39–69

[20]

Ward, J. P. and King, J. R. (1999) Mathematical modelling of avascular-tumour growth. II: Modelling growth saturation. IMA J. Math. Appl. Med. Biol., 16, 171–211

[21]

Breward, C. J. W., Byrne, H. M. and Lewis, C. E. (2002) The role of cell-cell interactions in a two-phase model for avascular tumour growth. J. Math. Biol., 45, 125–152

[22]

Breward, C. J. W., Byrne, H. M. and Lewis, C. E. (2003) A multiphase model describing vascular tumour growth. Bull. Math. Biol., 65, 609–640

[23]

Araujo, R. P. and McElwain, D. L. S. (2005) A mixture theory for the genesis of residual stresses in growing tissues I: A general formulation. SIAM J. Appl. Math., 65, 1261–1284

[24]

Araujo, R. P. and McElwain, D. L. S. (2005) A mixture theory for the genesis of residual stresses in growing tissues II: solutions to the biphasic equations for a multicell spheroid. SIAM J. Appl. Math., 66, 447–467

[25]

Macklin, P. and Lowengrub, J. (2007) Nonlinear simulation of the effect of microenvironment on tumor growth. J. Theor. Biol., 245, 677–704

[26]

Wise, S. M., Lowengrub, J. S., Frieboes, H. B. and Cristini, V. (2008) Three-dimensional multispecies nonlinear tumor growth‒I Model and numerical method. J. Theor. Biol., 253, 524–543

[27]

Macklin, P., McDougall, S., Anderson, A. R. A., Chaplain, M. A. J., Cristini, V. and Lowengrub, J. (2009) Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol., 58, 765–798

[28]

Frieboes, H. B., Jin, F., Chuang, Y.-L., Wise, S. M., Lowengrub, J. S. and Cristini, V. (2010) Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis. J. Theor. Biol., 264, 1254–1278

[29]

Hawkins-Daarud, A., van der Zee, K. G. and Oden, J. T. (2012) Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int. J. Numer. Methods Biomed. Eng., 28, 3–24

[30]

Chen, Y. and Lowengrub, J. S. (2014) Tumor growth in complex, evolving microenvironmental geometries: a diffuse domain approach. J. Theor. Biol., 361, 14–30

[31]

Albano, G., Giorno, V., Román-Román, P., Román-Román, S. and Torres-Ruiz, F. (2015) Estimating and determining the effect of a therapy on tumor dynamics by means of a modified Gompertz diffusion process. J. Theor. Biol., 364, 206–219

[32]

Al-Mamun, M. A., Farid, D. M., Ravenhil, L., Hossain, M. A., Fall, C. and Bass, R. (2016) An in silico model to demonstrate the effects of Maspin on cancer cell dynamics. J. Theor. Biol., 388, 37–49

[33]

Ng, C. F. and Frieboes, H. B. (2017) Model of vascular desmoplastic multispecies tumor growth. J. Theor. Biol., 430, 245–282

[34]

Schreiber, H. and Rowley, D. A. (2010) Cancer. Awakening immunity. Science, 330, 761–762

[35]

Ma, J., Liu, L., Che, G., Yu, N., Dai, F. and You, Z. (2010) The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer, 10, 112

[36]

Spira, A. and Ettinger, D. S. (2004) Multidisciplinary management of lung cancer. N. Engl. J. Med., 350, 379–392

[37]

Abulaiti, A., Shintani, Y., Funaki, S., Nakagiri, T., Inoue, M., Sawabata, N., Minami, M. and Okumura, M. (2013) Interaction between non-small-cell lung cancer cells and fibroblasts via enhancement of TGF-b signaling by IL-6. Lung Cancer, 82, 204–213

[38]

Anderson, A. R. A., Weaver, A. M., Cummings, P. T. and Quaranta, V. (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell, 127, 905–915

[39]

Bremnes, R. M., Camps, C. and Sirera, R. (2006) Angiogenesis in non-small cell lung cancer: the prognostic impact of neoangiogenesis and the cytokines VEGF and bFGF in tumours and blood. Lung Cancer, 51, 143–158

[40]

Tlsty, T. D. and Coussens, L. M. (2006) Tumor stroma and regulation of cancer development. Annu. Rev. Pathol., 1, 119–150

[41]

Polyak, K., Haviv, I. and Campbell, I. G. (2009) Co-evolution of tumor cells and their microenvironment. Trends Genet., 25, 30–38

[42]

Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646–674

[43]

Wistuba, I. I., Behrens, C., Virmani, A. K., Mele, G., Milchgrub, S., Girard, L., Fondon, J. W. 3rd, Garner, H. R., McKay, B., Latif, F., (2000) High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res., 60, 1949–1960

[44]

Sánchez-Martín, L., Estecha, A., Samaniego, R., Sánchez-Ramón, S., Vega, M. Á. and Sánchez-Mateos, P. (2011) The chemokine CXCL12 regulates monocyte-macrophage differentiation and RUNX3 expression. Blood, 117, 88–97

[45]

Noy, R. and Pollard, J. W. (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity, 41, 49–61

[46]

Tsakiridis, T., Cutz, J.-C., Singh, G., Hirte, H., Okawara, G., Corbett, T., Sur, R., Cai, W., Whelan, T. and Wright, J. R. (2008) Association of phosphorylated epidermal growth factor receptor with survival in patients with locally advanced non-small cell lung cancer treated with radiotherapy. J. Thorac. Oncol., 3, 716–722

[47]

Puri, N. and Salgia, R. (2008) Synergism of EGFR and c-Met pathways, cross-talk and inhibition, in non-small cell lung cancer. J. Carcinog., 7, 9

[48]

Marek, L., Ware, K. E., Fritzsche, A., Hercule, P., Helton, W. R., Smith, J. E., McDermott, L. A., Coldren, C. D., Nemenoff, R. A., Merrick, D. T., (2009) Fibroblast growth factor (FGF) and FGF receptor-mediated autocrine signaling in non-small-cell lung cancer cells. Mol. Pharmacol., 75, 196–207

[49]

Huang, H. P., Feng, H., Qiao, H. B., Ren, Z. X. and Zhu, G. D. (2015) The prognostic significance of fibroblast growth factor receptor 4 in non-small-cell lung cancer. OncoTargets Ther., 8, 1157–1164

[50]

Li, J., Guan, J., Long, X., Wang, Y. and Xiang, X. (2016) mir-1-mediated paracrine effect of cancer-associated fibroblasts on lung cancer cell proliferation and chemoresistance. Oncol. Rep., 35, 3523–3531

[51]

Fritz, J. M., Dwyer-Nield, L. D. and Malkinson, A. M. (2011) Stimulation of neoplastic mouse lung cell proliferation by alveolar macrophage-derived, insulin-like growth factor-1 can be blocked by inhibiting MEK and PI3K activation. Mol. Cancer, 10, 76

[52]

Hsu, T. I., Wang, Y. C., Hung, C. Y., Yu, C. H., Su, W. C., Chang, W. C. and Hung, J. J. (2016) Positive feedback regulation between IL10 and EGFR promotes lung cancer formation. Oncotarget, 7, 20840–20854

[53]

Zhong, X., Fan, Y., Ritzenthaler, J. D., Zhang, W., Wang, K., Zhou, Q. and Roman, J. (2015) Novel link between prostaglandin E2 (PGE2) and cholinergic signaling in lung cancer: The role of c-Jun in PGE2-induced a7 nicotinic acetylcholine receptor expression and tumor cell proliferation. Thorac. Cancer, 6, 488–500

[54]

Luppi, F., Longo, A. M., de Boer, W. I., Rabe, K. F. and Hiemstra, P. S. (2007) Interleukin-8 stimulates cell proliferation in non-small cell lung cancer through epidermal growth factor receptor transactivation. Lung Cancer, 56, 25–33

[55]

O’Byrne, K. J., Koukourakis, M. I., Giatromanolaki, A., Cox, G., Turley, H., Steward, W. P., Gatter, K. and Harris, A. L. (2000) Vascular endothelial growth factor, platelet-derived endothelial cell growth factor and angiogenesis in non-small-cell lung cancer. Br. J. Cancer, 82, 1427–1432

[56]

Pertovaara, L., Kaipainen, A., Mustonen, T., Orpana, A., Ferrara, N., Saksela, O. and Alitalo, K. (1994) Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J. Biol. Chem., 269, 6271–6274

[57]

Saijo, Y., Tanaka, M., Miki, M., Usui, K., Suzuki, T., Maemondo, M., Hong, X., Tazawa, R., Kikuchi, T., Matsushima, K., (2002) Proinflammatory cytokine IL-1 beta promotes tumor growth of Lewis lung carcinoma by induction of angiogenic factors: in vivo analysis of tumor-stromal interaction. J. Immunol., 169, 469–475

[58]

Boussat, S., Eddahibi, S., Coste, A., Fataccioli, V., Gouge, M., Housset, B., Adnot, S. and Maitre, B. (2000) Expression and regulation of vascular endothelial growth factor in human pulmonary epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 279, L371–L378

[59]

Schmidt, T., Ben-Batalla, I., Schultze, A. and Loges, S. (2012) Macrophage-tumor crosstalk: role of TAMR tyrosine kinase receptors and of their ligands. Cell. Mol. Life Sci., 69, 1391–1414

[60]

Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Harris, P. L., Haserlat, S. M., Supko, J. G., Haluska, F. G., (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 350, 2129–2139

[61]

Li, J., Brahmer, J., Messersmith, W., Hidalgo, M. and Baker, S. D. (2006) Binding of gefitinib, an inhibitor of epidermal growth factor receptor-tyrosine kinase, to plasma proteins and blood cells: in vitro and in cancer patients. Invest. New Drugs, 24, 291–297

[62]

Peters, S., Zimmermann, S. and Adjei, A. A. (2014) Oral epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: comparative pharmacokinetics and drug-drug interactions. Cancer Treat. Rev., 40, 917–926

[63]

Swaisland, H. C., Smith, R. P., Laight, A., Kerr, D. J., Ranson, M., Wilder-Smith, C. H. and Duvauchelle, T. (2005) Single-dose clinical pharmacokinetic studies of gefitinib. Clin. Pharmacokinet., 44, 1165–1177

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1334KB)

Supplementary files

QB-19171-OF-WY_suppl_1

QB-19171-OF-WY_suppl_2

QB-19171-OF-WY_suppl_3

QB-19171-OF-WY_suppl_4

QB-19171-OF-WY_suppl_5

QB-19171-OF-WY_suppl_6

1147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/