Regulation by competition: a hidden layer of gene regulatory network

Lei Wei , Ye Yuan , Tao Hu , Shuailin Li , Tianrun Cheng , Jinzhi Lei , Zhen Xie , Michael Q. Zhang , Xiaowo Wang

Quant. Biol. ›› 2019, Vol. 7 ›› Issue (2) : 110 -121.

PDF (1428KB)
Quant. Biol. ›› 2019, Vol. 7 ›› Issue (2) : 110 -121. DOI: 10.1007/s40484-018-0162-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Regulation by competition: a hidden layer of gene regulatory network

Author information +
History +
PDF (1428KB)

Abstract

Background: Molecular competition brings about trade-offs of shared limited resources among the cellular components, and thus introduces a hidden layer of regulatory mechanism by connecting components even without direct physical interactions. Several molecular competition scenarios have been observed recently, but there is still a lack of systematic quantitative understanding to reveal the essence of molecular competition.

Methods: Here, by abstracting the analogous competition mechanism behind diverse molecular systems, we built a unified coarse-grained competition motif model to systematically integrate experimental evidences in these processes and analyzed general properties shared behind them from steady-state behavior to dynamic responses.

Results: We could predict in what molecular environments competition would reveal threshold behavior or display a negative linear dependence. We quantified how competition can shape regulator-target dose-response curve, modulate dynamic response speed, control target expression noise, and introduce correlated fluctuations between targets.

Conclusions: This work uncovered the complexity and generality of molecular competition effect as a hidden layer of gene regulatory network, and therefore provided a unified insight and a theoretical framework to understand and employ competition in both natural and synthetic systems.

Graphical abstract

Keywords

systems biology / computational modeling / molecular competition regulation / synthetic biology / network motif

Cite this article

Download citation ▾
Lei Wei, Ye Yuan, Tao Hu, Shuailin Li, Tianrun Cheng, Jinzhi Lei, Zhen Xie, Michael Q. Zhang, Xiaowo Wang. Regulation by competition: a hidden layer of gene regulatory network. Quant. Biol., 2019, 7(2): 110-121 DOI:10.1007/s40484-018-0162-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hardin, G. (1960) The competitive exclusion principle. Science, 131, 1292–1297

[2]

Schoener, T. W. (1983) Field experiments on interspecific competition. Am. Nat., 122, 240–285

[3]

Connell, J. H. (1983) On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat., 122, 661–696

[4]

Zwietering, M. H., Jongenburger, I., Rombouts, F. M. and van ’t Riet, K. (1990) Modeling of the bacterial growth curve. Appl. Environ. Microbiol., 56, 1875–1881

[5]

Bolnick, D. I. (2004) Can intraspecific competition drive disruptive selection? An experimental test in natural populations of sticklebacks. Evolution, 58, 608–618

[6]

Svanbäck, R. and Bolnick, D. I. (2007) Intraspecific competition drives increased resource use diversity within a natural population. Proc. Biol. Sci., 274, 839–844

[7]

Khare, A. and Shaulsky, G. (2006) First among equals: competition between genetically identical cells. Nat. Rev. Genet., 7, 577–583

[8]

Johnston, L. A. (2009) Competitive interactions between cells: death, growth, and geography. Science, 324, 1679–1682

[9]

Laird, A. K. (1964) Dynamics of tumor growth. Br. J. Cancer, 18, 490–502

[10]

Chang, C. H., Qiu, J., O’Sullivan, D., Buck, M. D., Noguchi, T., Curtis, J. D., Chen, Q., Gindin, M., Gubin, M. M., van der Windt, G. J., (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell, 162, 1229–1241

[11]

Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. and Hwa, T. (2010) Interdependence of cell growth and gene expression: origins and consequences. Science, 330, 1099–1102

[12]

Weiße, A. Y., Oyarzún, D. A., Danos, V. and Swain, P. S. (2015) Mechanistic links between cellular trade-offs, gene expression, and growth. Proc. Natl. Acad. Sci. USA, 112, E1038–E1047

[13]

Hui, S., Silverman, J. M., Chen, S. S., Erickson, D. W., Basan, M., Wang, J., Hwa, T. and Williamson, J. R. (2015) Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol., 11, e784

[14]

Brewster, R. C., Weinert, F. M., Garcia, H. G., Song, D., Rydenfelt, M. and Phillips, R. (2014) The transcription factor titration effect dictates level of gene expression. Cell, 156, 1312–1323

[15]

Sigova, A. A., Abraham, B. J., Ji, X., Molinie, B., Hannett, N. M., Guo, Y. E., Jangi, M., Giallourakis, C. C., Sharp, P. A. and Young, R. A. (2015) Transcription factor trapping by RNA in gene regulatory elements. Science, 350, 978–981

[16]

Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., Luo, Y., Lyu, D., Li, Y., Shi, G., (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun., 7, 11215

[17]

Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., Tramontano, A. and Bozzoni, I. (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 147, 358–369

[18]

Sumazin, P., Yang, X., Chiu, H. S., Chung, W. J., Iyer, A., Llobet-Navas, D., Rajbhandari, P., Bansal, M., Guarnieri, P., Silva, J., (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell, 147, 370–381

[19]

Saha, S., Weber, C. A., Nousch, M., Adame-Arana, O., Hoege, C., Hein, M. Y., Osborne-Nishimura, E., Mahamid, J., Jahnel, M., Jawerth, L., (2016) Polar positioning of phase-separated liquid compartments in cells regulated by an mRNA competition mechanism. Cell 166, 1572–1584

[20]

Chiu, H.-S., Somvanshi, S., Patel, E., Chen, T.-W., Singh, V. P., Zorman, B., Patil, S. L., Pan, Y., Chatterjee, S. S., Sood, A. K., (2018) Pan-cancer analysis of lncRNA regulation supports their targeting of cancer genes in each tumor context. Cell Reports, 23, 297–312.e12

[21]

Cardinale, S. and Arkin, A. P. (2012) Contextualizing context for synthetic biology‒identifying causes of failure of synthetic biological systems. Biotechnol. J., 7, 856–866

[22]

Wu, G., Yan, Q., Jones, J. A., Tang, Y. J., Fong, S. S. and Koffas, M. A. G. (2016) Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol., 34, 652–664

[23]

Qian, Y., Huang, H. H., Jiménez, J. I. and Del Vecchio, D. (2017) Resource competition shapes the response of genetic circuits. ACS Synth. Biol., 6, 1263–1272

[24]

Jiang, P., Ventura, A. C., Sontag, E. D., Merajver, S. D., Ninfa, A. J. and Del Vecchio, D. (2011) Load-induced modulation of signal transduction networks. Sci. Signal., 4, ra67

[25]

Jayanthi, S., Nilgiriwala, K. S. and Del Vecchio, D. (2013) Retroactivity controls the temporal dynamics of gene transcription. ACS Synth. Biol., 2, 431–441

[26]

Ala, U., Karreth, F. A., Bosia, C., Pagnani, A., Taulli, R., Léopold, V., Tay, Y., Provero, P., Zecchina, R. and Pandolfi, P. P. (2013) Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc. Natl. Acad. Sci. USA, 110, 7154–7159

[27]

Chiu, H.-S., Martínez, M. R., Komissarova, E. V., Llobet-Navas, D., Bansal, M., Paull, E. O., Silva, J., Yang, X., Sumazin, P. and Califano, A. (2018) The number of titrated microRNA species dictates ceRNA regulation. Nucleic Acids Res., 46, 4354–4369

[28]

Yuan, Y., Liu, B., Xie, P., Zhang, M. Q., Li, Y., Xie, Z. and Wang, X. (2015) Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc. Natl. Acad. Sci. USA, 112, 3158–3163

[29]

Gorochowski, T. E., Avcilar-Kucukgoze, I., Bovenberg, R. A., Roubos, J. A. and Ignatova, Z. (2016) A minimal model of ribosome allocation dynamics captures trade-offs in expression between endogenous and synthetic genes. ACS Synth. Biol., 5, 710–720

[30]

Mather, W. H., Cookson, N. A., Hasty, J., Tsimring, L. S. and Williams, R. J. (2010) Correlation resonance generated by coupled enzymatic processing. Biophys. J., 99, 3172–3181

[31]

Cookson, N. A., Mather, W. H., Danino, T., Mondragón-Palomino, O., Williams, R. J., Tsimring, L. S. and Hasty, J. (2014) Queueing up for enzymatic processing: correlated signaling through coupled degradation. Mol. Syst. Biol., 7, 561

[32]

Gyorgy, A., Jiménez, J. I., Yazbek, J., Huang, H. H., Chung, H., Weiss, R. and Del Vecchio, D. (2015) Isocost lines describe the cellular economy of genetic circuits. Biophys. J., 109, 639–646

[33]

Carbonell-Ballestero, M., Garcia-Ramallo, E., Montañez, R., Rodriguez-Caso, C. and Macía, J. (2016) Dealing with the genetic load in bacterial synthetic biology circuits: convergences with the Ohm’s law. Nucleic Acids Res., 44, 496–507

[34]

Buchler, N. E. and Louis, M. (2008) Molecular titration and ultrasensitivity in regulatory networks. J. Mol. Biol., 384, 1106–1119

[35]

Mukherji, S., Ebert, M. S., Zheng, G. X. Y., Tsang, J. S., Sharp, P. A. and van Oudenaarden, A. (2011) MicroRNAs can generate thresholds in target gene expression. Nat. Genet., 43, 854–859

[36]

Quarton, T., Ehrhardt, K., Lee, J., Kannan, S., Li, Y., Ma, L., & Bleris, L. (2018) Mapping the operational landscape of microRNAs in synthetic gene circuits. NPJ Syst. Biol. Appl.,

[37]

Lee, T. H. and Maheshri, N. (2012) A regulatory role for repeated decoy transcription factor binding sites in target gene expression. Mol. Syst. Biol., 8, 576

[38]

Jens, M. and Rajewsky, N. (2015) Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat. Rev. Genet., 16, 113–126

[39]

Yuan, Y., Ren, X., Xie, Z. and Wang, X. (2016) A quantitative understanding of microRNA-mediated competing endogenous RNA regulation. Quant. Biol., 4, 47–57

[40]

Mishra, D., Rivera, P. M., Lin, A., Del Vecchio, D. and Weiss, R. (2014) A load driver device for engineering modularity in biological networks. Nat. Biotechnol., 32, 1268–1275

[41]

Burger, A., Walczak, A. M. and Wolynes, P. G. (2010) Abduction and asylum in the lives of transcription factors. Proc. Natl. Acad. Sci. USA, 107, 4016–4021

[42]

Blake, W. J., KAErn, M., Cantor, C. R. and Collins, J. J. (2003) Noise in eukaryotic gene expression. Nature, 422, 633–637

[43]

Chen, M., Wang, L., Liu, C. C. and Nie, Q. (2013) Noise attenuation in the ON and OFF states of biological switches. ACS Synth. Biol., 2, 587–593

[44]

Schrödinger, E. (1944) What is Life? Cambridge: Cambridge University Press

[45]

Schmiedel, J. M., Klemm, S. L., Zheng, Y., Sahay, A., Blüthgen, N., Marks, D. S. and van Oudenaarden, A. (2015) MicroRNA control of protein expression noise. Science, 348, 128–132

[46]

Bosia, C., Sgrò F., Conti, L., Baldassi, C., Brusa, D., Cavallo, F., Cunto, F. D., Turco, E., Pagnani, A. and Zecchina, R. (2017) RNAs competing for microRNAs mutually influence their fluctuations in a highly non-linear microRNA-dependent manner in single cells. Genome Biol., 18, 37

[47]

Mather, W. H., Hasty, J., Tsimring, L. S. and Williams, R. J. (2013) Translational cross talk in gene networks. Biophys. J., 104, 2564–2572

[48]

Chou, T.-C. and Talaly, P. (1977) A simple generalized equation for the analysis of multiple inhibitions of Michaelis-Menten kinetic systems. J. Biol. Chem., 252, 6438–6442

[49]

Bintu, L., Buchler, N. E., Garcia, H. G., Gerland, U., Hwa, T., Kondev, J. and Phillips, R. (2005) Transcriptional regulation by the numbers: models. Curr. Opin. Genet. Dev., 15, 116–124

[50]

Xie, P., Liu, Y., Li, Y., Zhang, M. Q. and Wang, X. (2014) MIROR: a method for cell-type specific microRNA occupancy rate prediction. Mol. Biosyst., 10, 1377–1384

[51]

Rondelez, Y. (2012) Competition for catalytic resources alters biological network dynamics. Phys. Rev. Lett., 108, 018102

[52]

Kim, J., Hopfield, J. and Winfree, E. (2004) Neural network computation by in vitro transcriptional circuits. In Advances in Neural Information Processing Systems 17, 681–688. Vancouver, Canada

[53]

Genot, A. J., Fujii, T. and Rondelez, Y. (2013) Scaling down DNA circuits with competitive neural networks. J. R. Soc. Interface, 10, 20130212

[54]

Lakin, M. R. and Stefanovic, D. (2016) Supervised learning in adaptive DNA strand displacement networks. ACS Synth. Biol., 5, 885–897

[55]

Seitz, H. (2009) Redefining microRNA targets. Curr. Biol., 19, 870–873

[56]

Brophy, J. A. and Voigt, C. A. (2014) Principles of genetic circuit design. Nat. Methods, 11, 508–520

[57]

Potvin-Trottier, L., Lord, N. D., Vinnicombe, G. and Paulsson, J. (2016) Synchronous long-term oscillations in a synthetic gene circuit. Nature, 538, 514–517

[58]

Liao, C., Blanchard, A. E. and Lu, T. (2017) An integrative circuit-host modelling framework for predicting synthetic gene network behaviours. Nat. Microbiol., 2, 1658–1666

[59]

Venturelli, O. S., Tei, M., Bauer, S., Chan, L. J. G., Petzold, C. J. and Arkin, A. P. (2017) Programming mRNA decay to modulate synthetic circuit resource allocation. Nat. Commun., 8, 15128

[60]

Nissim, L., Wu, M. R., Pery, E., Binder-Nissim, A., Suzuki, H. I., Stupp, D., Wehrspaun, C., Tabach, Y., Sharp, P. A., and Lu, T. K. (2017) Synthetic RNA-based immunomodulatory gene circuits for cancer immunotherapy. Cell 171,1138–1150e1115

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (1428KB)

Supplementary files

QB-18162-OF-WXW_suppl_1

2519

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/