Transcriptome assembly strategies for precision medicine

Lu Wang , Lipi Acharya , Changxin Bai , Dongxiao Zhu

Quant. Biol. ›› 2017, Vol. 5 ›› Issue (4) : 280 -290.

PDF (1377KB)
Quant. Biol. ›› 2017, Vol. 5 ›› Issue (4) : 280 -290. DOI: 10.1007/s40484-017-0109-2
REVIEW
REVIEW

Transcriptome assembly strategies for precision medicine

Author information +
History +
PDF (1377KB)

Abstract

Background: Precision medicine approach holds great promise to tailored diagnosis, treatment and prevention. Individuals can be vastly different in their genomic information and genetic mechanisms hence having unique transcriptomic signatures. The development of precision medicine has demanded moving beyond DNA sequencing (DNA-Seq) to much more pointed RNA-sequencing (RNA-Seq) [Cell, 2017, 168: 584–599].

Results: Here we conduct a brief survey on the recent methodology development of transcriptome assembly approach using RNA-Seq.

Conclusions: Since transcriptomes in human disease are highly complex, dynamic and diverse, transcriptome assembly is playing an increasingly important role in precision medicine research to dissect the molecular mechanisms of the human diseases.

Graphical abstract

Keywords

precision medicine / transcriptome assembly / RNA-Seq / de novo / De Bruijn

Cite this article

Download citation ▾
Lu Wang, Lipi Acharya, Changxin Bai, Dongxiao Zhu. Transcriptome assembly strategies for precision medicine. Quant. Biol., 2017, 5(4): 280-290 DOI:10.1007/s40484-017-0109-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Buguliskis, J. S. (2015) Could rna-seq become the workhorse of precision medicine? Genet. Eng. Biotech. N. 35, 8–9

[2]

Chen, R. and Snyder, M. (2013) Promise of personalized omics to precision medicine. Wiley Interdiscip. Rev. Syst. Biol. Med., 5, 73–82

[3]

Collins, F. S. and Varmus, H. (2015) A new initiative on precision medicine. N. Engl. J. Med., 372, 793–795

[4]

Klauschen, F., Andreeff, M., Keilholz, U., Dietel, M. and Stenzinger, A. (2014) The combinatorial complexity of cancer precision medicine. Oncoscience, 1, 504–509

[5]

Çakır, Ö., Turgut-Kara, N., Arı Ş. and Zhang, B. (2015) De novo transcriptome assembly and comparative analysis elucidate complicated mechanism regulating Astragalus chrysochlorus response to selenium stimuli. PLoS One, 10, e0135677

[6]

Nayak L., Ray I., De R. K. (2016) Precision medicine with electronic medical records: from the patients and for the patients, Ann. Transl. Med. 4 (Suppl 1), S61

[7]

Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V. and Fotiadis, D. I. (2015) Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J., 13, 8–17

[8]

Vural, S., Wang, X. and Guda, C. (2016) Classification of breast cancer patients using somatic mutation profiles and machine learning approaches. BMC Syst. Biol., 10, 62

[9]

Hyman, D. M., Taylor, B. S. and Baselga, J. (2017) Implementing genome-driven oncology. Cell, 168, 584–599

[10]

Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., (2016) A survey of best practices for RNA-seq data analysis. Genome Biol., 17, 13

[11]

Martin, J. A. and Wang, Z. (2011) Next-generation transcriptome assembly. Nat. Rev. Genet., 12, 671–682

[12]

Zerbino, D. R. and Birney, E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res., 18, 821–829

[13]

Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J. and Birol, I. (2009) ABySS: a parallel assembler for short read sequence data. Genome Res., 19, 1117–1123

[14]

Pevzner, P. A., Tang, H. and Waterman, M. S. (2001) An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. USA, 98, 9748–9753

[15]

Fumagalli, M. (2013) Assessing the effect of sequencing depth and sample size in population genetics inferences. PLoS One, 8, e79667

[16]

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol., 29, 644–652

[17]

Bruijn, N. (1946) A Combinatorial Problem. In Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Series A, 49, 758–764.

[18]

Schulz, M. H., Zerbino, D. R., Vingron, M. and Birney, E. (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics, 28, 1086–1092

[19]

Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S., Huang, W., He, G., Gu, S., Li, S., (2014) SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics, 30, 1660–1666

[20]

Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K. and Wang, J. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966–1967

[21]

Shi, C.-Y., Yang, H., Wei, C.-L., Yu, O., Zhang, Z.-Z., Jiang, C.-J., Sun, J., Li, Y.-Y., Chen, Q., Xia, T., (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics, 12, 131

[22]

Garg, R., Patel, R. K., Tyagi, A. K. and Jain, M. (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res., 18, 53–63

[23]

Zhao, Q.-Y., Wang, Y., Kong, Y.-M., Luo, D., Li, X. and Hao, P. (2011) Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics, 12, S2

[24]

Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S. D., Mungall, K., Lee, S., Okada, H. M., Qian, J. Q., (2010) De novo assembly and analysis of RNA-seq data. Nat. Methods, 7, 909–912

[25]

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L. and Pachter, L. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc., 7, 562–578

[26]

Trapnell, C., Pachter, L. and Salzberg, S. L. (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25, 1105–1111

[27]

Yandell, M. and Ence, D. (2012) A beginner’s guide to eukaryotic genome annotation. Nat. Rev. Genet., 13, 329–342

[28]

Chang, Z., Li, G., Liu, J., Zhang, Y., Ashby, C., Liu, D., Cramer, C. L. and Huang, X. (2015) Bridger: a new framework for de novo transcriptome assembly using RNA-seq data. Genome Biol., 16, 30.

[29]

Maretty, L., Sibbesen, J. A. and Krogh, A. ( 2014) Bayesian transcriptome assembly. Genome Biol., 15, 501

[30]

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. and Salzberg, S. L. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol., 14, R36

[31]

Martin, J., Bruno, V. M., Fang, Z., Meng, X., Blow, M., Zhang, T., Sherlock, G., Snyder, M. and Wang, Z. (2010) Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genomics, 11, 663

[32]

Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B., Eccles, D., Li, B., Lieber, M., (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc., 8, 1494–1512

[33]

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J. and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515

[34]

Guttman, M., Garber, M., Levin, J. Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., Koziol, M. J., Gnirke, A., Nusbaum, C., (2010) Ab initio reconstruction of cell type–specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol., 28, 503–510

[35]

Liu, J., Yu, T., Jiang, T. and Li, G. (2016) TransComb: genome-guided transcriptome assembly via combing junctions in splicing graphs. Genome Biol., 17, 213

[36]

Myers, E. W. (1995) Toward simplifying and accurately formulating fragment assembly. J. Comput. Biol., 2, 275–290

[37]

Kumar, S. and Blaxter, M. L. (2010) Comparing de novo assemblers for 454 transcriptome data. BMC Genomics, 11, 571

[38]

Zeng, V., Villanueva, K. E., Ewen-Campen, B. S., Alwes, F., Browne, W. E. and Extavour, C. G. (2011) De novo assembly and characterization of a maternal and developmental transcriptome for the emerging model crustacean Parhyale hawaiensis. BMC Genomics, 12, 581

[39]

Zhu, J., He, F., Wang, J. and Yu, J. (2008) Modeling transcriptome based on transcript-sampling data. PLoS One, 3, e1659

[40]

Li, B., Fillmore, N., Bai, Y., Collins, M., Thomson, J. A., Stewart, R. and Dewey, C. N. (2014) Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol., 15, 553

[41]

Garber, M., Grabherr, M. G., Guttman, M. and Trapnell, C. (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat. Methods, 8, 469–477

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1377KB)

1535

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/