Transcriptome assembly strategies for precision medicine
Lu Wang, Lipi Acharya, Changxin Bai, Dongxiao Zhu
Transcriptome assembly strategies for precision medicine
Background: Precision medicine approach holds great promise to tailored diagnosis, treatment and prevention. Individuals can be vastly different in their genomic information and genetic mechanisms hence having unique transcriptomic signatures. The development of precision medicine has demanded moving beyond DNA sequencing (DNA-Seq) to much more pointed RNA-sequencing (RNA-Seq) [Cell, 2017, 168: 584–599].
Results: Here we conduct a brief survey on the recent methodology development of transcriptome assembly approach using RNA-Seq.
Conclusions: Since transcriptomes in human disease are highly complex, dynamic and diverse, transcriptome assembly is playing an increasingly important role in precision medicine research to dissect the molecular mechanisms of the human diseases.
precision medicine / transcriptome assembly / RNA-Seq / de novo / De Bruijn
[1] |
Buguliskis, J. S. (2015) Could rna-seq become the workhorse of precision medicine? Genet. Eng. Biotech. N. 35, 8–9
|
[2] |
Chen, R. and Snyder, M. (2013) Promise of personalized omics to precision medicine. Wiley Interdiscip. Rev. Syst. Biol. Med., 5, 73–82
CrossRef
Pubmed
Google scholar
|
[3] |
Collins, F. S. and Varmus, H. (2015) A new initiative on precision medicine. N. Engl. J. Med., 372, 793–795
CrossRef
Pubmed
Google scholar
|
[4] |
Klauschen, F., Andreeff, M., Keilholz, U., Dietel, M. and Stenzinger, A. (2014) The combinatorial complexity of cancer precision medicine. Oncoscience, 1, 504–509
CrossRef
Pubmed
Google scholar
|
[5] |
Çakır, Ö., Turgut-Kara, N., Arı, Ş. and Zhang, B. (2015) De novo transcriptome assembly and comparative analysis elucidate complicated mechanism regulating Astragalus chrysochlorus response to selenium stimuli. PLoS One, 10, e0135677
CrossRef
Pubmed
Google scholar
|
[6] |
Nayak L., Ray I., De R. K. (2016) Precision medicine with electronic medical records: from the patients and for the patients, Ann. Transl. Med. 4 (Suppl 1), S61
|
[7] |
Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V. and Fotiadis, D. I. (2015) Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J., 13, 8–17
CrossRef
Pubmed
Google scholar
|
[8] |
Vural, S., Wang, X. and Guda, C. (2016) Classification of breast cancer patients using somatic mutation profiles and machine learning approaches. BMC Syst. Biol., 10, 62
CrossRef
Pubmed
Google scholar
|
[9] |
Hyman, D. M., Taylor, B. S. and Baselga, J. (2017) Implementing genome-driven oncology. Cell, 168, 584–599
CrossRef
Pubmed
Google scholar
|
[10] |
Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X.,
CrossRef
Pubmed
Google scholar
|
[11] |
Martin, J. A. and Wang, Z. (2011) Next-generation transcriptome assembly. Nat. Rev. Genet., 12, 671–682
CrossRef
Pubmed
Google scholar
|
[12] |
Zerbino, D. R. and Birney, E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res., 18, 821–829
CrossRef
Pubmed
Google scholar
|
[13] |
Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J. and Birol, I. (2009) ABySS: a parallel assembler for short read sequence data. Genome Res., 19, 1117–1123
CrossRef
Pubmed
Google scholar
|
[14] |
Pevzner, P. A., Tang, H. and Waterman, M. S. (2001) An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. USA, 98, 9748–9753
CrossRef
Pubmed
Google scholar
|
[15] |
Fumagalli, M. (2013) Assessing the effect of sequencing depth and sample size in population genetics inferences. PLoS One, 8, e79667
CrossRef
Pubmed
Google scholar
|
[16] |
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q.,
CrossRef
Pubmed
Google scholar
|
[17] |
Bruijn, N. (1946) A Combinatorial Problem. In Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Series A, 49, 758–764.
|
[18] |
Schulz, M. H., Zerbino, D. R., Vingron, M. and Birney, E. (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics, 28, 1086–1092
CrossRef
Pubmed
Google scholar
|
[19] |
Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S., Huang, W., He, G., Gu, S., Li, S.,
CrossRef
Pubmed
Google scholar
|
[20] |
Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K. and Wang, J. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966–1967
CrossRef
Pubmed
Google scholar
|
[21] |
Shi, C.-Y., Yang, H., Wei, C.-L., Yu, O., Zhang, Z.-Z., Jiang, C.-J., Sun, J., Li, Y.-Y., Chen, Q., Xia, T.,
CrossRef
Pubmed
Google scholar
|
[22] |
Garg, R., Patel, R. K., Tyagi, A. K. and Jain, M. (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res., 18, 53–63
CrossRef
Pubmed
Google scholar
|
[23] |
Zhao, Q.-Y., Wang, Y., Kong, Y.-M., Luo, D., Li, X. and Hao, P. (2011) Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics, 12, S2
CrossRef
Pubmed
Google scholar
|
[24] |
Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S. D., Mungall, K., Lee, S., Okada, H. M., Qian, J. Q.,
CrossRef
Pubmed
Google scholar
|
[25] |
Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L. and Pachter, L. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc., 7, 562–578
CrossRef
Pubmed
Google scholar
|
[26] |
Trapnell, C., Pachter, L. and Salzberg, S. L. (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25, 1105–1111
CrossRef
Pubmed
Google scholar
|
[27] |
Yandell, M. and Ence, D. (2012) A beginner’s guide to eukaryotic genome annotation. Nat. Rev. Genet., 13, 329–342
CrossRef
Pubmed
Google scholar
|
[28] |
Chang, Z., Li, G., Liu, J., Zhang, Y., Ashby, C., Liu, D., Cramer, C. L. and Huang, X. (2015) Bridger: a new framework for de novo transcriptome assembly using RNA-seq data. Genome Biol., 16, 30.
CrossRef
Pubmed
Google scholar
|
[29] |
Maretty, L., Sibbesen, J. A. and Krogh, A. ( 2014) Bayesian transcriptome assembly. Genome Biol., 15, 501
CrossRef
Pubmed
Google scholar
|
[30] |
Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. and Salzberg, S. L. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol., 14, R36
CrossRef
Pubmed
Google scholar
|
[31] |
Martin, J., Bruno, V. M., Fang, Z., Meng, X., Blow, M., Zhang, T., Sherlock, G., Snyder, M. and Wang, Z. (2010) Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genomics, 11, 663
CrossRef
Pubmed
Google scholar
|
[32] |
Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B., Eccles, D., Li, B., Lieber, M.,
CrossRef
Pubmed
Google scholar
|
[33] |
Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J. and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515
CrossRef
Pubmed
Google scholar
|
[34] |
Guttman, M., Garber, M., Levin, J. Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., Koziol, M. J., Gnirke, A., Nusbaum, C.,
CrossRef
Pubmed
Google scholar
|
[35] |
Liu, J., Yu, T., Jiang, T. and Li, G. (2016) TransComb: genome-guided transcriptome assembly via combing junctions in splicing graphs. Genome Biol., 17, 213
CrossRef
Pubmed
Google scholar
|
[36] |
Myers, E. W. (1995) Toward simplifying and accurately formulating fragment assembly. J. Comput. Biol., 2, 275–290
CrossRef
Pubmed
Google scholar
|
[37] |
Kumar, S. and Blaxter, M. L. (2010) Comparing de novo assemblers for 454 transcriptome data. BMC Genomics, 11, 571
CrossRef
Pubmed
Google scholar
|
[38] |
Zeng, V., Villanueva, K. E., Ewen-Campen, B. S., Alwes, F., Browne, W. E. and Extavour, C. G. (2011) De novo assembly and characterization of a maternal and developmental transcriptome for the emerging model crustacean Parhyale hawaiensis. BMC Genomics, 12, 581
CrossRef
Pubmed
Google scholar
|
[39] |
Zhu, J., He, F., Wang, J. and Yu, J. (2008) Modeling transcriptome based on transcript-sampling data. PLoS One, 3, e1659
CrossRef
Pubmed
Google scholar
|
[40] |
Li, B., Fillmore, N., Bai, Y., Collins, M., Thomson, J. A., Stewart, R. and Dewey, C. N. (2014) Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol., 15, 553
CrossRef
Pubmed
Google scholar
|
[41] |
Garber, M., Grabherr, M. G., Guttman, M. and Trapnell, C. (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat. Methods, 8, 469–477
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |