Transcriptome assembly strategies for precision medicine

Lu Wang, Lipi Acharya, Changxin Bai, Dongxiao Zhu

PDF(1377 KB)
PDF(1377 KB)
Quant. Biol. ›› 2017, Vol. 5 ›› Issue (4) : 280-290. DOI: 10.1007/s40484-017-0109-2
REVIEW
REVIEW

Transcriptome assembly strategies for precision medicine

Author information +
History +

Abstract

Background: Precision medicine approach holds great promise to tailored diagnosis, treatment and prevention. Individuals can be vastly different in their genomic information and genetic mechanisms hence having unique transcriptomic signatures. The development of precision medicine has demanded moving beyond DNA sequencing (DNA-Seq) to much more pointed RNA-sequencing (RNA-Seq) [Cell, 2017, 168: 584–599].

Results: Here we conduct a brief survey on the recent methodology development of transcriptome assembly approach using RNA-Seq.

Conclusions: Since transcriptomes in human disease are highly complex, dynamic and diverse, transcriptome assembly is playing an increasingly important role in precision medicine research to dissect the molecular mechanisms of the human diseases.

Graphical abstract

Keywords

precision medicine / transcriptome assembly / RNA-Seq / de novo / De Bruijn

Cite this article

Download citation ▾
Lu Wang, Lipi Acharya, Changxin Bai, Dongxiao Zhu. Transcriptome assembly strategies for precision medicine. Quant. Biol., 2017, 5(4): 280‒290 https://doi.org/10.1007/s40484-017-0109-2

References

[1]
Buguliskis, J. S. (2015) Could rna-seq become the workhorse of precision medicine? Genet. Eng. Biotech. N. 35, 8–9
[2]
Chen, R. and Snyder, M. (2013) Promise of personalized omics to precision medicine. Wiley Interdiscip. Rev. Syst. Biol. Med., 5, 73–82
CrossRef Pubmed Google scholar
[3]
Collins, F. S. and Varmus, H. (2015) A new initiative on precision medicine. N. Engl. J. Med., 372, 793–795
CrossRef Pubmed Google scholar
[4]
Klauschen, F., Andreeff, M., Keilholz, U., Dietel, M. and Stenzinger, A. (2014) The combinatorial complexity of cancer precision medicine. Oncoscience, 1, 504–509
CrossRef Pubmed Google scholar
[5]
Çakır, Ö., Turgut-Kara, N., Arı, Ş. and Zhang, B. (2015) De novo transcriptome assembly and comparative analysis elucidate complicated mechanism regulating Astragalus chrysochlorus response to selenium stimuli. PLoS One, 10, e0135677
CrossRef Pubmed Google scholar
[6]
Nayak L., Ray I., De R. K. (2016) Precision medicine with electronic medical records: from the patients and for the patients, Ann. Transl. Med. 4 (Suppl 1), S61
[7]
Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V. and Fotiadis, D. I. (2015) Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J., 13, 8–17
CrossRef Pubmed Google scholar
[8]
Vural, S., Wang, X. and Guda, C. (2016) Classification of breast cancer patients using somatic mutation profiles and machine learning approaches. BMC Syst. Biol., 10, 62
CrossRef Pubmed Google scholar
[9]
Hyman, D. M., Taylor, B. S. and Baselga, J. (2017) Implementing genome-driven oncology. Cell, 168, 584–599
CrossRef Pubmed Google scholar
[10]
Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., (2016) A survey of best practices for RNA-seq data analysis. Genome Biol., 17, 13
CrossRef Pubmed Google scholar
[11]
Martin, J. A. and Wang, Z. (2011) Next-generation transcriptome assembly. Nat. Rev. Genet., 12, 671–682
CrossRef Pubmed Google scholar
[12]
Zerbino, D. R. and Birney, E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res., 18, 821–829
CrossRef Pubmed Google scholar
[13]
Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J. and Birol, I. (2009) ABySS: a parallel assembler for short read sequence data. Genome Res., 19, 1117–1123
CrossRef Pubmed Google scholar
[14]
Pevzner, P. A., Tang, H. and Waterman, M. S. (2001) An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. USA, 98, 9748–9753
CrossRef Pubmed Google scholar
[15]
Fumagalli, M. (2013) Assessing the effect of sequencing depth and sample size in population genetics inferences. PLoS One, 8, e79667
CrossRef Pubmed Google scholar
[16]
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol., 29, 644–652
CrossRef Pubmed Google scholar
[17]
Bruijn, N. (1946) A Combinatorial Problem. In Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Series A, 49, 758–764.
[18]
Schulz, M. H., Zerbino, D. R., Vingron, M. and Birney, E. (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics, 28, 1086–1092
CrossRef Pubmed Google scholar
[19]
Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S., Huang, W., He, G., Gu, S., Li, S., (2014) SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics, 30, 1660–1666
CrossRef Pubmed Google scholar
[20]
Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K. and Wang, J. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966–1967
CrossRef Pubmed Google scholar
[21]
Shi, C.-Y., Yang, H., Wei, C.-L., Yu, O., Zhang, Z.-Z., Jiang, C.-J., Sun, J., Li, Y.-Y., Chen, Q., Xia, T., (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics, 12, 131
CrossRef Pubmed Google scholar
[22]
Garg, R., Patel, R. K., Tyagi, A. K. and Jain, M. (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res., 18, 53–63
CrossRef Pubmed Google scholar
[23]
Zhao, Q.-Y., Wang, Y., Kong, Y.-M., Luo, D., Li, X. and Hao, P. (2011) Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics, 12, S2
CrossRef Pubmed Google scholar
[24]
Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S. D., Mungall, K., Lee, S., Okada, H. M., Qian, J. Q., (2010) De novo assembly and analysis of RNA-seq data. Nat. Methods, 7, 909–912
CrossRef Pubmed Google scholar
[25]
Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L. and Pachter, L. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc., 7, 562–578
CrossRef Pubmed Google scholar
[26]
Trapnell, C., Pachter, L. and Salzberg, S. L. (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25, 1105–1111
CrossRef Pubmed Google scholar
[27]
Yandell, M. and Ence, D. (2012) A beginner’s guide to eukaryotic genome annotation. Nat. Rev. Genet., 13, 329–342
CrossRef Pubmed Google scholar
[28]
Chang, Z., Li, G., Liu, J., Zhang, Y., Ashby, C., Liu, D., Cramer, C. L. and Huang, X. (2015) Bridger: a new framework for de novo transcriptome assembly using RNA-seq data. Genome Biol., 16, 30.
CrossRef Pubmed Google scholar
[29]
Maretty, L., Sibbesen, J. A. and Krogh, A. ( 2014) Bayesian transcriptome assembly. Genome Biol., 15, 501
CrossRef Pubmed Google scholar
[30]
Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. and Salzberg, S. L. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol., 14, R36
CrossRef Pubmed Google scholar
[31]
Martin, J., Bruno, V. M., Fang, Z., Meng, X., Blow, M., Zhang, T., Sherlock, G., Snyder, M. and Wang, Z. (2010) Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genomics, 11, 663
CrossRef Pubmed Google scholar
[32]
Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B., Eccles, D., Li, B., Lieber, M., (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc., 8, 1494–1512
CrossRef Pubmed Google scholar
[33]
Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J. and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515
CrossRef Pubmed Google scholar
[34]
Guttman, M., Garber, M., Levin, J. Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., Koziol, M. J., Gnirke, A., Nusbaum, C., (2010) Ab initio reconstruction of cell type–specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol., 28, 503–510
CrossRef Pubmed Google scholar
[35]
Liu, J., Yu, T., Jiang, T. and Li, G. (2016) TransComb: genome-guided transcriptome assembly via combing junctions in splicing graphs. Genome Biol., 17, 213
CrossRef Pubmed Google scholar
[36]
Myers, E. W. (1995) Toward simplifying and accurately formulating fragment assembly. J. Comput. Biol., 2, 275–290
CrossRef Pubmed Google scholar
[37]
Kumar, S. and Blaxter, M. L. (2010) Comparing de novo assemblers for 454 transcriptome data. BMC Genomics, 11, 571
CrossRef Pubmed Google scholar
[38]
Zeng, V., Villanueva, K. E., Ewen-Campen, B. S., Alwes, F., Browne, W. E. and Extavour, C. G. (2011) De novo assembly and characterization of a maternal and developmental transcriptome for the emerging model crustacean Parhyale hawaiensis. BMC Genomics, 12, 581
CrossRef Pubmed Google scholar
[39]
Zhu, J., He, F., Wang, J. and Yu, J. (2008) Modeling transcriptome based on transcript-sampling data. PLoS One, 3, e1659
CrossRef Pubmed Google scholar
[40]
Li, B., Fillmore, N., Bai, Y., Collins, M., Thomson, J. A., Stewart, R. and Dewey, C. N. (2014) Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol., 15, 553
CrossRef Pubmed Google scholar
[41]
Garber, M., Grabherr, M. G., Guttman, M. and Trapnell, C. (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat. Methods, 8, 469–477
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

This paper is based upon work supported by the National Science Foundation under Grand Nos. 1637312 and 1451316.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Lu Wang, Lipi Acharya, Changxin Bai and Dongxiao Zhu declare that they have no conflict of interests.
This article is a review article and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1377 KB)

Accesses

Citations

Detail

Sections
Recommended

/