HiC-3DViewer: a new tool to visualize Hi-C data in 3D space

Mohamed Nadhir Djekidel , Mengjie Wang , Michael Q. Zhang , Juntao Gao

Quant. Biol. ›› 2017, Vol. 5 ›› Issue (2) : 183 -190.

PDF (1088KB)
Quant. Biol. ›› 2017, Vol. 5 ›› Issue (2) : 183 -190. DOI: 10.1007/s40484-017-0091-8
RESEARCH ARTICLE
RESEARCH ARTICLE

HiC-3DViewer: a new tool to visualize Hi-C data in 3D space

Author information +
History +
PDF (1088KB)

Abstract

Background: Although significant progress has been made to map chromatin structure at unprecedented resolution and scales, we are short of tools that enable the intuitive visualization and navigation along the three-dimensional (3D) structure of chromatins. The available tools people have so far are generally script-based or present basic features that do not easily enable the integration of genomic data along with 3D chromatin structure, hence, many scientists find themselves in the obligation to hack tools designed for other purposes such as tools for protein structure study.

Methods: We present HiC-3DViewer, a new browser-based interactive tool designed to provide an intuitive environment for investigators to facilitate the 3D exploratory analysis of Hi-C data along with many useful annotation functionalities. Among the key features of HiC-3DViewer relevant to chromatin conformation studies, the most important one is the 1D-to-2D-to-3D mapping, to highlight genomic regions of interest interactively. This feature enables investigators to explore their data at different levels/angels. Additionally, investigators can superpose different genomic signals (such as ChIP-Seq, SNP) on the top of the 3D structure.

Results: As a proof of principle we applied HiC-3DViewer to investigate the quality of Hi-C data and to show the spatial binding of GATA1 and GATA2 along the genome.

Conclusions: As a user-friendly tool, HiC-3DViewer enables the visualization of inter/intra-chromatin interactions and gives users the flexibility to customize the look-and-feel of the 3D structure with a simple click. HiC-3DViewer is implemented in Javascript and Python, and is freely available at: http://bioinfo.au.tsinghua.edu.cn/member/nadhir/HiC3DViewer/. Supplementary information (User Manual, demo data) is also available at this website.

Graphical abstract

Keywords

Hi-C / 3D genome visualization / chromatin structure prediction

Cite this article

Download citation ▾
Mohamed Nadhir Djekidel, Mengjie Wang, Michael Q. Zhang, Juntao Gao. HiC-3DViewer: a new tool to visualize Hi-C data in 3D space. Quant. Biol., 2017, 5(2): 183-190 DOI:10.1007/s40484-017-0091-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289–293

[2]

Li, G., Ruan, X., Auerbach, R. K., Sandhu, K. S., Zheng, M., Wang, P., Poh, H. M., Goh, Y., Lim, J., Zhang, J., (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell, 148, 84–98

[3]

Sanyal, A., Lajoie, B. R., Jain, G. and Dekker, J. (2012) The long-range interaction landscape of gene promoters. Nature, 489, 109–113

[4]

Göndör, A. and Ohlsson, R. (2009) Chromosome crosstalk in three dimensions. Nature, 461, 212–217

[5]

Varoquaux, N., Ay, F., Noble, W. S. and Vert, J.-P. (2014) A statistical approach for inferring the 3D structure of the genome. Bioinformatics, 30, i26–i33

[6]

Baù D., Sanyal, A., Lajoie, B. R., Capriotti, E., Byron, M., Lawrence, J. B., Dekker, J. and Marti-Renom, M. A. (2011) The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nat. Struct. Mol. Biol., 18, 107–114

[7]

Wang, S., Xu, J. and Zeng, J. (2015) Inferential modeling of 3D chromatin structure. Nucleic Acids Res., 43, e54

[8]

Thongjuea, S., Stadhouders, R., Grosveld, F. G., Soler, E. and Lenhard, B. (2013) r3Cseq: an R/Bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data. Nucleic Acids Res., 41, e132

[9]

Phanstiel, D. H., Boyle, A. P., Araya, C. L. and Snyder, M. P. (2014) Sushi.R: flexible, quantitative and integrative genomic visualizations for publication-quality multi-panel figures. Bioinformatics, 30, 2808–2810

[10]

Schrödinger, LLC (2010) The PyMOL Molecular Graphics System, Versio1 1.3r1.

[11]

Nowotny, J., Wells, A., Xu, L., Cao, R., Trieu, T., He, C., Cheng, J. (2016) GMOL: an interactive tool for 3D genome structure visualization. Sci. Rep. 6, 20802

[12]

Asbury, T. M., Mitman, M., Tang, J. and Zheng, W. J. (2010) Genome3D: a viewer-model framework for integrating and visualizing multi-scale epigenomic information within a three-dimensional genome. BMC Bioinformatics, 11, 444

[13]

Peng, C., Fu, L.-Y., Dong, P.-F., Deng, Z.-L., Li, J.-X., Wang, X. T. and Zhang, H. Y. (2013) The sequencing bias relaxed characteristics of Hi-C derived data and implications for chromatin 3D modeling. Nucleic Acids Res., 41, e183

[14]

Teng, L., He, B., Wang, J. and Tan, K. (2015) 4DGenome: a comprehensive database of chromatin interactions. Bioinformatics, 31, 2560–2564

[15]

Dirksen, J. (2013) Learning Three.js: The JavaScript 3D Library for WebGL. Birmingham: Packt Publishing

[16]

Grinberg, M. (2014) Flask Web Development. Sebastopol: O’Reilly Media

[17]

Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y. J., Lee, C., Shendure, J., Fields, S., Blau, C. A. and Noble, W. S. (2010) A three-dimensional model of the yeast genome. Nature, 465, 363–367

[18]

Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A. and Cavalli, G. (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell, 148, 458–472

[19]

Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159, 1665–1680

[20]

Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376–380

[21]

Ay, F., Bunnik, E. M., Varoquaux, N., Bol, S. M., Prudhomme, J., Vert, J. P., Noble, W. S. and Le Roch, K. G. (2014) Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Res., 24, 974–988

[22]

Lan, X., Witt, H., Katsumura, K., Ye, Z., Wang, Q., Bresnick, E. H., Farnham, P. J. and Jin, V. X. (2012) Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin linkages. Nucleic Acids Res., 40, 7690–7704

[23]

Hu, M., Deng, K., Selvaraj, S., Qin, Z., Ren, B. and Liu, J. S. (2012) HiCNorm: removing biases in Hi-C data via Poisson regression. Bioinformatics, 28, 3131–3133

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1088KB)

Supplementary files

QB-17091-OF-DN_suppl_1

QB-17091-OF-DN_suppl_2

4785

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/