An overview of major metagenomic studies on human microbiomes in health and disease

Hongfei Cui , Yingxue Li , Xuegong Zhang

Quant. Biol. ›› 2016, Vol. 4 ›› Issue (3) : 192 -206.

PDF (787KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (3) : 192 -206. DOI: 10.1007/s40484-016-0078-x
REVIEW
REVIEW

An overview of major metagenomic studies on human microbiomes in health and disease

Author information +
History +
PDF (787KB)

Abstract

Many microbes are important symbiotes of human. They form specific microbiota communities, participate in various kinds of biological processes of their host and thus deeply affect human health status. Metagenomic sequencing has been widely used in human microbiota study due to its capacity of studying all genetic materials in an environment as a whole without any extra need of isolation or cultivation of microorganisms. Many efforts have been made by researchers in this area trying to dig out interesting knowledge from various metagenome data. In this review, we go through some prominent studies in the metagenomic area. We summarize them into three categories, constructing taxonomy and gene reference, characterization of microbiome distribution patterns, and detection of microbiome alternations associated with specific human phenotypes or diseases. Some available data resources are also provided. This review can serve as an entrance to this exciting and rapidly developing field for researchers interested in human microbiomes.

Graphical abstract

Keywords

metagenome / human microbiome / taxonomy and gene reference / distribution pattern / microbiome variation

Cite this article

Download citation ▾
Hongfei Cui, Yingxue Li, Xuegong Zhang. An overview of major metagenomic studies on human microbiomes in health and disease. Quant. Biol., 2016, 4(3): 192-206 DOI:10.1007/s40484-016-0078-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Savage, D. C. (1977) Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol., 31, 107–133

[2]

Lundberg, J. O., Weitzberg, E., Cole, J. A. and Benjamin, N. (2004) Nitrate, bacteria and human health. Nat. Rev. Microbiol., 2, 593–602

[3]

Relman, D. A. (2011) Microbial genomics and infectious diseases. N. Engl. J. Med., 365, 347–357

[4]

Loman, N. J., Constantinidou, C., Christner, M., Rohde, H., Chan, J. Z., Quick, J., Weir, J. C., Quince, C., Smith, G. P., Betley, J. R., (2013) A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA, 309, 1502–1510

[5]

Kamada, N., Chen, G. Y., Inohara, N. and Núñez, G. (2013) Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol., 14, 685–690.

[6]

Gallo, R. L. and Hooper, L. V. (2012) Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol., 12, 503–516

[7]

Schloss, P. D. and Handelsman, J. (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol., 6, 229

[8]

van Opstal, E. J. and Bordenstein, S. R. (2015) MICROBIOME. Rethinking heritability of the microbiome. Science, 349, 1172–1173

[9]

Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J. and Goodman, R. M. (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol., 5, R245–R249

[10]

Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K., Salazar, G., Djahanschiri, B., Zeller, G., Mende, D. R., Alberti, A., (2015) Ocean plankton. Structure and function of the global ocean microbiome. Science, 348, 1261359

[11]

Debroas, D., Humbert, J. F., Enault, F., Bronner, G., Faubladier, M. and Cornillot, E. (2009) Metagenomic approach studying the taxonomic and functional diversity of the bacterial community in a mesotrophic lake (Lac du Bourget—France). Environ. Microbiol., 11, 2412–2424

[12]

Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., Loiacono, K. A., Lynch, B. A., MacNeil, I. A., Minor, C., (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol., 66, 2541–2547

[13]

Cesaroni, G., Forastiere, F., Stafoggia, M., Andersen, Z. J., Badaloni, C., Beelen, R., Caracciolo, B., de Faire, U., Erbel, R., Eriksen, K. T., (2014) Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ, 348, f7412

[14]

Walker, A. (2010) A glut from the gut: metagenomics takes a giant step foward. Nat. Rev. Microbiol., 8, 315

[15]

Lepage, P., Leclerc, M. C., Joossens, M., Mondot, S., Blottière, H. M., Raes, J., Ehrlich, D. and Doré J. (2013) A metagenomic insight into our gut’s microbiome. Gut, 62, 146–158.

[16]

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. and Glöckner, F. O. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res., 41, D590–D596

[17]

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P. and Andersen, G. L. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol., 72, 5069–5072

[18]

Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., Brown, C. T., Porras-Alfaro, A., Kuske, C. R. and Tiedje, J. M. (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res., 42, D633–D642

[19]

NCBI Resource Coordinators. (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res., 44, D7–D19

[20]

Markowitz, V. M., Chen, I. M., Palaniappan, K., Chu, K., Szeto, E., Pillay, M., Ratner, A., Huang, J., Woyke, T., Huntemann, M., (2014) IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res., 42, D560–D567

[21]

Chen, T., Yu, W. H., Izard, J., Baranova, O. V., Lakshmanan, A. and Dewhirst, F. E. (2010) The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford), 2010, baq013

[22]

Nielsen, H. B., Almeida, M., Juncker, A. S., Rasmussen, S., Li, J., Sunagawa, S., Plichta, D. R., Gautier, L., Pedersen, A. G., Le Chatelier, E., (2014) Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol., 32, 822–828

[23]

Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. and Tanabe, M. (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res., 44, D457–D462

[24]

UniProt Consortium. (2015) UniProt: a hub for protein information. Nucleic Acids Res., 43, D204–D212

[25]

Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A. T., Creasy, H. H., Earl, A. M., FitzGerald, M. G., Fulton, R. S., (2012) Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214

[26]

Li, J., Jia, H., Cai, X., Zhong, H., Feng, Q., Sunagawa, S., Arumugam, M., Kultima, J. R., Prifti, E., Nielsen, T., (2014) An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol., 32, 834–841

[27]

Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., Guo, J., Le Chatelier, E., Yao, J., Wu, L., (2014) Alterations of the human gut microbiome in liver cirrhosis. Nature, 513, 59–64

[28]

Oh, J., Byrd, A. L., Deming, C., Conlan, S., Kong, H. H., Segre, J. A., Segre, J. A., and the NISC Comparative Sequencing Program. (2014) Biogeography and individuality shape function in the human skin metagenome. Nature, 514, 59–64

[29]

Feng, Q., Liang, S., Jia, H., Stadlmayr, A., Tang, L., Lan, Z., Zhang, D., Xia, H., Xu, X., Jie, Z.,(2015) Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun., 6, 6528

[30]

Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E. M., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, 9, 386

[31]

Hunter, S., Corbett, M., Denise, H., Fraser, M., Gonzalez-Beltran, A., Hunter, C., Jones, P., Leinonen, R., McAnulla, C., Maguire, E., (2014) EBI metagenomics—a new resource for the analysis and archiving of metagenomic data. Nucleic Acids Res., 42, D600–D606

[32]

Woese, C. R. (1987) Bacterial evolution. Microbiol. Rev., 51, 221–271

[33]

Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. and Schmidt, T. M. (2015) rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res., 43, D593–D598

[34]

Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760

[35]

Langmead, B. and Salzberg, S. L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357–359

[36]

Li, R., Yu, C., Li, Y., Lam, T. W., Yiu, S. M., Kristiansen, K. and Wang, J. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966–1967

[37]

Methé B. A., Nelson, K. E., Pop, M., Creasy, H. H., Giglio, M. G., Huttenhower, C., Gevers, D., Petrosino, J. F., Abubucker, S., Badger, J. H., (2012) A framework for human microbiome research. Nature, 486, 215–221

[38]

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59–65

[39]

Wood, D. E. and Salzberg, S. L. (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol., 15, R46

[40]

Jia, B., Xuan, L., Cai, K., Hu, Z., Ma, L. and Wei, C. (2013) NeSSM: a next-generation sequencing simulator for metagenomics. PLoS One, 8, e75448

[41]

Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490, 55–60

[42]

Baker, B. J., Sheik, C. S., Taylor, C. A., Jain, S., Bhasi, A., Cavalcoli, J. D. and Dick, G. J. (2013) Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling. ISME J., 7, 1962–1973

[43]

Inskeep, W. P., Jay, Z. J., Herrgard, M. J., Kozubal, M. A., Rusch, D. B., Tringe, S. G., Macur, R. E., Jennings, R., Boyd, E. S., Spear, J. R., (2013) Phylogenetic and functional analysis of metagenome sequence from high-temperature archaeal habitats demonstrate linkages between metabolic potential and geochemistry. Front. Microbiol., 4, 95

[44]

Segata, N., Waldron, L., Ballarini, A., Narasimhan, V., Jousson, O. and Huttenhower, C. (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods, 9, 811–814

[45]

Jagtap, P., McGowan, T., Bandhakavi, S., Tu, Z. J., Seymour, S., Griffin, T. J. and Rudney, J. D. (2012) Deep metaproteomic analysis of human salivary supernatant. Proteomics, 12, 992–1001

[46]

Liu, B., Faller, L. L., Klitgord, N., Mazumdar, V., Ghodsi, M., Sommer, D. D., Gibbons, T. R., Treangen, T. J., Chang, Y. C., Li, S., (2012) Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One, 7, e37919

[47]

Warinner, C., Rodrigues, J. F., Vyas, R., Trachsel, C., Shved, N., Grossmann, J., Radini, A., Hancock, Y., Tito, R. Y., Fiddyment, S., (2014) Pathogens and host immunity in the ancient human oral cavity. Nat. Genet., 46, 336–344

[48]

Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience, 1, 18

[49]

Namiki, T., Hachiya, T., Tanaka, H. and Sakakibara, Y. (2012) MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res., 40, e155

[50]

Peng, Y., Leung, H. C., Yiu, S. M. and Chin, F. Y. (2011) Meta-IDBA: a de novo assembler for metagenomic data. Bioinformatics, 27, i94–i101

[51]

Zhu, W., Lomsadze, A. and Borodovsky, M. (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res., 38, e132

[52]

Delcher, A. L., Harmon, D., Kasif, S., White, O. and Salzberg, S. L. (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res., 27, 4636–4641

[53]

Fu, L., Niu, B., Zhu, Z., Wu, S. and Li, W. (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28, 3150–3152

[54]

Edgar, R. C. (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461

[55]

Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., Almeida, M., Arumugam, M., Batto, J. M., Kennedy, S., (2013) Richness of human gut microbiome correlates with metabolic markers. Nature, 500, 541–546

[56]

Tatusov, R. L., Koonin, E. V. and Lipman, D. J. (1997) A genomic perspective on protein families. Science, 278, 631–637

[57]

Overbeek, R., Begley, T., Butler, R. M., Choudhuri, J. V., Chuang, H. Y., Cohoon, M., de Crécy-Lagard, V., Diaz, N., Disz, T., Edwards, R., (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res., 33, 5691–5702

[58]

Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., Potter, S. C., Punta, M., Qureshi, M., Sangrador-Vegas, A., (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res., 44, D279–D285

[59]

Selengut, J. D., Haft, D. H., Davidsen, T., Ganapathy, A., Gwinn-Giglio, M., Nelson, W. C., Richter, A. R. and White, O. (2007) TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes. Nucleic Acids Res., 35, D260–D264

[60]

Huson, D. H., Auch, A. F., Qi, J. and Schuster, S. C. (2007) MEGAN analysis of metagenomic data. Genome Res., 17, 377–386

[61]

Zhou, X., Brown, C. J., Abdo, Z., Davis, C. C., Hansmann, M. A., Joyce, P., Foster, J. A. and Forney, L. J. (2007) Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women. ISME J., 1, 121–133

[62]

Brotman, R. M., Bradford, L. L., Conrad, M., Gajer, P., Ault, K., Peralta, L., Forney, L. J., Carlton, J. M., Abdo, Z. and Ravel, J. (2012) Association between Trichomonas vaginalis and vaginal bacterial community composition among reproductive-age women. Sex. Transm. Dis., 39, 807–812

[63]

Brotman, R. M., Shardell, M. D., Gajer, P., Fadrosh, D., Chang, K., Silver, M. I., Viscidi, R. P., Burke, A. E., Ravel, J. and Gravitt, P. E. (2014) Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause, 21, 450–458

[64]

Ravel, J., Gajer, P., Fu, L., Mauck, C. K., Koenig, S. S., Sakamoto, J., Motsinger-Reif, A. A., Doncel, G. F. and Zeichner, S. L. (2012) Twice-daily application of HIV microbicides alter the vaginal microbiota. MBio, 3, e00370-12

[65]

Mehta, S. D., Donovan, B., Weber, K. M., Cohen, M., Ravel, J., Gajer, P., Gilbert, D., Burgad, D. and Spear, G. T. (2015) The vaginal microbiota over an 8- to 10-year period in a cohort of HIV-infected and HIV-uninfected women. PLoS One, 10, e0116894

[66]

Romero, R., Hassan, S. S., Gajer, P., Tarca, A. L., Fadrosh, D. W., Nikita, L., Galuppi, M., Lamont, R. F., Chaemsaithong, P., Miranda, J., (2014) The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome, 2, 4

[67]

DiGiulio, D. B., Callahan, B. J., McMurdie, P. J., Costello, E. K., Lyell, D. J., Robaczewska, A., Sun, C. L., Goltsman, D. S., Wong, R. J., Shaw, G., (2015) Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl. Acad. Sci. USA, 112, 11060–11065

[68]

Huang, Y. E., Wang, Y., He, Y., Ji, Y., Wang, L. P., Sheng, H. F., Zhang, M., Huang, Q. T., Zhang, D. J., Wu, J. J., (2015) Homogeneity of the vaginal microbiome at the cervix, posterior fornix, and vaginal canal in pregnant Chinese women. Microb. Ecol., 69, 407–414

[69]

Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., (2011) Enterotypes of the human gut microbiome. Nature, 473, 174–180

[70]

Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science, 334, 105–108

[71]

Moeller, A. H., Degnan, P. H., Pusey, A. E., Wilson, M. L., Hahn, B. H. and Ochman, H. (2012) Chimpanzees and humans harbour compositionally similar gut enterotypes. Nat. Commun., 3, 1179

[72]

Jeffery, I. B., Claesson, M. J., O’Toole, P. W. and Shanahan, F. (2012) Categorization of the gut microbiota: enterotypes or gradients? Nat. Rev. Microbiol., 10, 591–592

[73]

Knights, D., Ward, T. L., McKinlay, C. E., Miller, H., Gonzalez, A., McDonald, D. and Knight, R. (2014) Rethinking “enterotypes”. Cell Host Microbe, 16, 433–437

[74]

Ding, T. and Schloss, P. D. (2014) Dynamics and associations of microbial community types across the human body. Nature, 509, 357–360

[75]

Franzosa, E. A., Huang, K., Meadow, J. F., Gevers, D., Lemon, K. P., Bohannan, B. J. and Huttenhower, C. (2015) Identifying personal microbiomes using metagenomic codes. Proc. Natl. Acad. Sci. USA, 112, E2930–E2938

[76]

Sharon, I., Morowitz, M. J., Thomas, B. C., Costello, E. K., Relman, D. A. and Banfield, J. F. (2013) Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res., 23, 111–120

[77]

Faith, J. J., Guruge, J. L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman, A. L., Clemente, J. C., Knight, R., Heath, A. C., Leibel, R. L., (2013) The long-term stability of the human gut microbiota. Science, 341, 1237439

[78]

Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. and Knight, R. (2012) Diversity, stability and resilience of the human gut microbiota. Nature, 489, 220–230

[79]

David, L. A., Materna, A. C., Friedman, J., Campos-Baptista, M. I., Blackburn, M. C., Perrotta, A., Erdman, S. E. and Alm, E. J. (2014) Host lifestyle affects human microbiota on daily timescales. Genome Biol., 15, R89

[80]

Smith, M. I., Yatsunenko, T., Manary, M. J., Trehan, I., Mkakosya, R., Cheng, J., Kau, A. L., Rich, S. S., Concannon, P., Mychaleckyj, J. C., (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science, 339, 548–554

[81]

Dewulf, E. M., Cani, P. D., Claus, S. P., Fuentes, S., Puylaert, P. G., Neyrinck, A. M., Bindels, L. B., de Vos, W. M., Gibson, G. R., Thissen, J. P., (2013) Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 62, 1112–1121

[82]

Cotillard, A., Kennedy, S. P., Kong, L. C., Prifti, E., Pons, N., Le Chatelier, E., Almeida, M., Quinquis, B., Levenez, F., Galleron, N., (2013) Dietary intervention impact on gut microbial gene richness. Nature, 500, 585–588

[83]

Adler, C.J., Dobney, K., Weyrich, L.S., Kaidonis, J., Walker, A.W., Haak, W., Bradshaw, C.J., Townsend, G., Soltysiak, A., Alt, K.W. (2013) Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet, 45, 450–455, 455e451

[84]

David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505, 559–563

[85]

Karlsson, F. H., Tremaroli, V., Nookaew, I., Bergström, G., Behre, C. J., Fagerberg, B., Nielsen, J. and Bäckhed, F. (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 498, 99–103

[86]

Rajilić-Stojanović M., Biagi, E., Heilig, H. G., Kajander, K., Kekkonen, R. A., Tims, S. and de Vos, W. M. (2011) Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology, 141, 1792–1801

[87]

Saulnier, D. M., Riehle, K., Mistretta, T. A., Diaz, M. A., Mandal, D., Raza, S., Weidler, E. M., Qin, X., Coarfa, C., Milosavljevic, A., (2011) Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology, 141, 1782–1791

[88]

Gevers, D., Kugathasan, S., Denson, L. A., Vázquez-Baeza, Y., Van Treuren, W., Ren, B., Schwager, E., Knights, D., Song, S. J., Yassour, M., (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe, 15, 382–392

[89]

Zhu, L., Baker, S. S., Gill, C., Liu, W., Alkhouri, R., Baker, R. D. and Gill, S. R. (2013) Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology, 57, 601–609

[90]

Karlsson, F. H., Fåk, F., Nookaew, I., Tremaroli, V., Fagerberg, B., Petranovic, D., Bäckhed, F. and Nielsen, J. (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun., 3, 1245

[91]

Kostic, A. D., Gevers, D., Pedamallu, C. S., Michaud, M., Duke, F., Earl, A. M., Ojesina, A. I., Jung, J., Bass, A. J., Tabernero, J., (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res., 22, 292–298

[92]

Yu, J., Feng, Q., Wong, S. H., Zhang, D., Liang, Q. Y., Qin, Y., Tang, L., Zhao, H., Stenvang, J., Li, Y., (2015) Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut, gutjnl-2015-309800

[93]

Tyakht, A. V., Kostryukova, E. S., Popenko, A. S., Belenikin, M. S., Pavlenko, A. V., Larin, A. K., Karpova, I. Y., Selezneva, O. V., Semashko, T. A., Ospanova, E. A., (2013) Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun., 4, 2469

[94]

Koren, O., Goodrich, J. K., Cullender, T. C., Spor, A., Laitinen, K., Bäckhed, H. K., Gonzalez, A., Werner, J. J., Angenent, L. T., Knight, R., (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell, 150, 470–480

[95]

Belda-Ferre, P., Alcaraz, L. D., Cabrera-Rubio, R., Romero, H., Simón-Soro, A., Pignatelli, M. and Mira, A. (2012) The oral metagenome in health and disease. ISME J., 6, 46–56

[96]

Wang, J., Qi, J., Zhao, H., He, S., Zhang, Y., Wei, S. and Zhao, F. (2013) Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Sci. Rep., 3, 1843

[97]

Duran-Pinedo, A. E., Chen, T., Teles, R., Starr, J. R., Wang, X., Krishnan, K. and Frias-Lopez, J. (2014) Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J., 8, 1659–1672

[98]

Yang, L., Lu, X., Nossa, C. W., Francois, F., Peek, R. M. and Pei, Z. (2009) Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology, 137, 588–59

[99]

Tunney, M. M., Einarsson, G. G., Wei, L., Drain, M., Klem, E. R., Cardwell, C., Ennis, M., Boucher, R. C., Wolfgang, M. C. and Elborn, J. S. (2013) Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am. J. Respir. Crit. Care Med., 187, 1118–1126

[100]

Marri, P.R., Stern, D.A., Wright, A.L., Billheimer, D. and Martinez, F.D. (2013) Asthma-associated differences in microbial composition of induced sputum. J. Allergy. Clin. Immunol., 131, 346–352. e3

[101]

Morris, A., Beck, J. M., Schloss, P. D., Campbell, T. B., Crothers, K., Curtis, J. L., Flores, S. C., Fontenot, A. P., Ghedin, E., Huang, L., (2013) Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med., 187, 1067–1075

[102]

Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., (2012) Human gut microbiome viewed across age and geography. Nature, 486, 222–227.

[103]

Claesson, M. J., Jeffery, I. B., Conde, S., Power, S. E., O’Connor, E. M., Cusack, S., Harris, H. M., Coakley, M., Lakshminarayanan, B., O’Sullivan, O., (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature, 488, 178–184

[104]

Stahringer, S. S., Clemente, J. C., Corley, R. P., Hewitt, J., Knights, D., Walters, W. A., Knight, R. and Krauter, K. S. (2012) Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood. Genome Res., 22, 2146–2152

[105]

Lozupone, C. A., Stombaugh, J., Gonzalez, A., Ackermann, G., Wendel, D., Vázquez-Baeza, Y., Jansson, J. K., Gordon, J. I. and Knight, R. (2013) Meta-analyses of studies of the human microbiota. Genome Res., 23, 1704–1714

[106]

Lax, S., Smith, D. P., Hampton-Marcell, J., Owens, S. M., Handley, K. M., Scott, N. M., Gibbons, S. M., Larsen, P., Shogan, B. D., Weiss, S., (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science, 345, 1048–1052

[107]

Kuleshov, V., Jiang, C., Zhou, W., Jahanbani, F., Batzoglou, S. and Snyder, M. (2016) Synthetic long-read sequencing reveals intraspecies diversity in the human microbiome. Nat. Biotechnol., 34, 64–69

[108]

Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Krogh Pedersen, H., (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528, 262–266

[109]

Liu, S., da Cunha, A. P., Rezende, R. M., Cialic, R., Wei, Z., Bry, L., Comstock, L. E., Gandhi, R. and Weiner, H. L. (2016) The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe., 19, 32–43

[110]

Cui, H. and Zhang, X. (2013) Alignment-free supervised classification of metagenomes by recursive SVM. BMC Genomics, 14, 641

[111]

Jiang, B., Song, K., Ren, J., Deng, M., Sun, F. and Zhang, X. (2012) Comparison of metagenomic samples using sequence signatures. BMC Genomics, 13, 730

[112]

Wang, Y., Liu, L., Chen, L., Chen, T. and Sun, F. (2014) Comparison of metatranscriptomic samples based on k-tuple frequencies. PLoS One, 9, e84348

[113]

Reyes, A., Haynes, M., Hanson, N., Angly, F. E., Heath, A. C., Rohwer, F. and Gordon, J. I. (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature, 466, 334–338

[114]

Kuss, S. K., Best, G. T., Etheredge, C. A., Pruijssers, A. J., Frierson, J. M., Hooper, L. V., Dermody, T. S. and Pfeiffer, J. K. (2011) Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science, 334, 249–252

[115]

Minot, S., Sinha, R., Chen, J., Li, H., Keilbaugh, S. A., Wu, G. D., Lewis, J. D. and Bushman, F. D. (2011) The human gut virome: inter-individual variation and dynamic response to diet. Genome Res., 21, 1616–1625

[116]

Minot, S., Bryson, A., Chehoud, C., Wu, G. D., Lewis, J. D. and Bushman, F. D. (2013) Rapid evolution of the human gut virome. Proc. Natl. Acad. Sci. USA, 110, 12450–12455

[117]

Edlund, A., Santiago-Rodriguez, T.M., Boehm, T.K. and Pride, D.T. (2015) Bacteriophage and their potential roles in the human oral cavity. 2015, 27423

[118]

Wang, J., Gao, Y. and Zhao, F. (2015) Phage-bacteria interaction network in human oral microbiome. Environ. Microbiol, 10.1111/1462-2920.12923

[119]

Bisanz, J. E. and Reid, G. (2011) Unraveling how probiotic yogurt works. Sci. Transl. Med., 3, 106ps41

[120]

Ghishan, F. K. and Kiela, P. R. (2011) From probiotics to therapeutics: another step forward? J. Clin. Invest., 121, 2149–2152

[121]

Borody, T. J. and Khoruts, A. (2012) Fecal microbiota transplantation and emerging applications. Nat. Rev. Gastroenterol. Hepatol., 9, 88–96

[122]

Lemon, K. P., Armitage, G. C., Relman, D. A. and Fischbach, M. A. (2012) Microbiota-targeted therapies: an ecological perspective. Sci. Transl. Med., 4, 137rv5

[123]

Sonnenburg, E. D., Smits, S. A., Tikhonov, M., Higginbottom, S. K., Wingreen, N. S. and Sonnenburg, J. L. (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529, 212–215

[124]

Chevalier, C., Stojanović O., Colin, D. J., Suarez-Zamorano, N., Tarallo, V., Veyrat-Durebex, C., Rigo, D., Fabbiano, S., Stevanović A., Hagemann, S., (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell, 163, 1360–1374

[125]

Zhang, X., Liu, S., Cui, H. and Chen, T.Reading the underlying information from massive metagenome sequencing data. To be published.

[126]

Bajaj, J. S., Betrapally, N. S. and Gillevet, P. M. (2015) Decompensated cirrhosis and microbiome interpretation. Nature, 525, E1–E2

[127]

Dubilier, N., McFall-Ngai, M. and Zhao, L. (2015) Microbiology: Create a global microbiome effort. Nature, 526, 631–634

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (787KB)

2696

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/