An overview of major metagenomic studies on human microbiomes in health and disease

Hongfei Cui, Yingxue Li, Xuegong Zhang

PDF(787 KB)
PDF(787 KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (3) : 192-206. DOI: 10.1007/s40484-016-0078-x
REVIEW
REVIEW

An overview of major metagenomic studies on human microbiomes in health and disease

Author information +
History +

Abstract

Many microbes are important symbiotes of human. They form specific microbiota communities, participate in various kinds of biological processes of their host and thus deeply affect human health status. Metagenomic sequencing has been widely used in human microbiota study due to its capacity of studying all genetic materials in an environment as a whole without any extra need of isolation or cultivation of microorganisms. Many efforts have been made by researchers in this area trying to dig out interesting knowledge from various metagenome data. In this review, we go through some prominent studies in the metagenomic area. We summarize them into three categories, constructing taxonomy and gene reference, characterization of microbiome distribution patterns, and detection of microbiome alternations associated with specific human phenotypes or diseases. Some available data resources are also provided. This review can serve as an entrance to this exciting and rapidly developing field for researchers interested in human microbiomes.

Graphical abstract

Keywords

metagenome / human microbiome / taxonomy and gene reference / distribution pattern / microbiome variation

Cite this article

Download citation ▾
Hongfei Cui, Yingxue Li, Xuegong Zhang. An overview of major metagenomic studies on human microbiomes in health and disease. Quant. Biol., 2016, 4(3): 192‒206 https://doi.org/10.1007/s40484-016-0078-x

References

[1]
Savage, D. C. (1977) Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol., 31, 107–133
CrossRef Pubmed Google scholar
[2]
Lundberg, J. O., Weitzberg, E., Cole, J. A. and Benjamin, N. (2004) Nitrate, bacteria and human health. Nat. Rev. Microbiol., 2, 593–602
CrossRef Pubmed Google scholar
[3]
Relman, D. A. (2011) Microbial genomics and infectious diseases. N. Engl. J. Med., 365, 347–357
CrossRef Pubmed Google scholar
[4]
Loman, N. J., Constantinidou, C., Christner, M., Rohde, H., Chan, J. Z., Quick, J., Weir, J. C., Quince, C., Smith, G. P., Betley, J. R., (2013) A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA, 309, 1502–1510
CrossRef Pubmed Google scholar
[5]
Kamada, N., Chen, G. Y., Inohara, N. and Núñez, G. (2013) Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol., 14, 685–690.
CrossRef Pubmed Google scholar
[6]
Gallo, R. L. and Hooper, L. V. (2012) Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol., 12, 503–516
CrossRef Pubmed Google scholar
[7]
Schloss, P. D. and Handelsman, J. (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol., 6, 229
CrossRef Pubmed Google scholar
[8]
van Opstal, E. J. and Bordenstein, S. R. (2015) MICROBIOME. Rethinking heritability of the microbiome. Science, 349, 1172–1173
CrossRef Pubmed Google scholar
[9]
Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J. and Goodman, R. M. (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol., 5, R245–R249
CrossRef Pubmed Google scholar
[10]
Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K., Salazar, G., Djahanschiri, B., Zeller, G., Mende, D. R., Alberti, A., (2015) Ocean plankton. Structure and function of the global ocean microbiome. Science, 348, 1261359
CrossRef Pubmed Google scholar
[11]
Debroas, D., Humbert, J. F., Enault, F., Bronner, G., Faubladier, M. and Cornillot, E. (2009) Metagenomic approach studying the taxonomic and functional diversity of the bacterial community in a mesotrophic lake (Lac du Bourget—France). Environ. Microbiol., 11, 2412–2424
CrossRef Pubmed Google scholar
[12]
Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., Loiacono, K. A., Lynch, B. A., MacNeil, I. A., Minor, C., (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol., 66, 2541–2547
CrossRef Pubmed Google scholar
[13]
Cesaroni, G., Forastiere, F., Stafoggia, M., Andersen, Z. J., Badaloni, C., Beelen, R., Caracciolo, B., de Faire, U., Erbel, R., Eriksen, K. T., (2014) Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ, 348, f7412
CrossRef Pubmed Google scholar
[14]
Walker, A. (2010) A glut from the gut: metagenomics takes a giant step foward. Nat. Rev. Microbiol., 8, 315
CrossRef Pubmed Google scholar
[15]
Lepage, P., Leclerc, M. C., Joossens, M., Mondot, S., Blottière, H. M., Raes, J., Ehrlich, D. and Doré, J. (2013) A metagenomic insight into our gut’s microbiome. Gut, 62, 146–158.
CrossRef Pubmed Google scholar
[16]
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J. and Glöckner, F. O. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res., 41, D590–D596
CrossRef Pubmed Google scholar
[17]
DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P. and Andersen, G. L. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol., 72, 5069–5072
CrossRef Pubmed Google scholar
[18]
Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., Brown, C. T., Porras-Alfaro, A., Kuske, C. R. and Tiedje, J. M. (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res., 42, D633–D642
CrossRef Pubmed Google scholar
[19]
NCBI Resource Coordinators. (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res., 44, D7–D19
CrossRef Pubmed Google scholar
[20]
Markowitz, V. M., Chen, I. M., Palaniappan, K., Chu, K., Szeto, E., Pillay, M., Ratner, A., Huang, J., Woyke, T., Huntemann, M., (2014) IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res., 42, D560–D567
CrossRef Pubmed Google scholar
[21]
Chen, T., Yu, W. H., Izard, J., Baranova, O. V., Lakshmanan, A. and Dewhirst, F. E. (2010) The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford), 2010, baq013
CrossRef Pubmed Google scholar
[22]
Nielsen, H. B., Almeida, M., Juncker, A. S., Rasmussen, S., Li, J., Sunagawa, S., Plichta, D. R., Gautier, L., Pedersen, A. G., Le Chatelier, E., (2014) Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol., 32, 822–828
CrossRef Pubmed Google scholar
[23]
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. and Tanabe, M. (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res., 44, D457–D462
CrossRef Pubmed Google scholar
[24]
UniProt Consortium. (2015) UniProt: a hub for protein information. Nucleic Acids Res., 43, D204–D212
CrossRef Pubmed Google scholar
[25]
Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A. T., Creasy, H. H., Earl, A. M., FitzGerald, M. G., Fulton, R. S., (2012) Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214
CrossRef Pubmed Google scholar
[26]
Li, J., Jia, H., Cai, X., Zhong, H., Feng, Q., Sunagawa, S., Arumugam, M., Kultima, J. R., Prifti, E., Nielsen, T., (2014) An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol., 32, 834–841
CrossRef Pubmed Google scholar
[27]
Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., Guo, J., Le Chatelier, E., Yao, J., Wu, L., (2014) Alterations of the human gut microbiome in liver cirrhosis. Nature, 513, 59–64
CrossRef Pubmed Google scholar
[28]
Oh, J., Byrd, A. L., Deming, C., Conlan, S., Kong, H. H., Segre, J. A., Segre, J. A., and the NISC Comparative Sequencing Program. (2014) Biogeography and individuality shape function in the human skin metagenome. Nature, 514, 59–64
CrossRef Pubmed Google scholar
[29]
Feng, Q., Liang, S., Jia, H., Stadlmayr, A., Tang, L., Lan, Z., Zhang, D., Xia, H., Xu, X., Jie, Z.,(2015) Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun., 6, 6528
CrossRef Pubmed Google scholar
[30]
Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E. M., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, 9, 386
CrossRef Pubmed Google scholar
[31]
Hunter, S., Corbett, M., Denise, H., Fraser, M., Gonzalez-Beltran, A., Hunter, C., Jones, P., Leinonen, R., McAnulla, C., Maguire, E., (2014) EBI metagenomics—a new resource for the analysis and archiving of metagenomic data. Nucleic Acids Res., 42, D600–D606
CrossRef Pubmed Google scholar
[32]
Woese, C. R. (1987) Bacterial evolution. Microbiol. Rev., 51, 221–271
Pubmed
[33]
Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. and Schmidt, T. M. (2015) rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res., 43, D593–D598
CrossRef Pubmed Google scholar
[34]
Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760
CrossRef Pubmed Google scholar
[35]
Langmead, B. and Salzberg, S. L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357–359
CrossRef Pubmed Google scholar
[36]
Li, R., Yu, C., Li, Y., Lam, T. W., Yiu, S. M., Kristiansen, K. and Wang, J. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966–1967
CrossRef Pubmed Google scholar
[37]
Methé, B. A., Nelson, K. E., Pop, M., Creasy, H. H., Giglio, M. G., Huttenhower, C., Gevers, D., Petrosino, J. F., Abubucker, S., Badger, J. H., (2012) A framework for human microbiome research. Nature, 486, 215–221
CrossRef Pubmed Google scholar
[38]
Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59–65
CrossRef Pubmed Google scholar
[39]
Wood, D. E. and Salzberg, S. L. (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol., 15, R46
CrossRef Pubmed Google scholar
[40]
Jia, B., Xuan, L., Cai, K., Hu, Z., Ma, L. and Wei, C. (2013) NeSSM: a next-generation sequencing simulator for metagenomics. PLoS One, 8, e75448
CrossRef Pubmed Google scholar
[41]
Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490, 55–60
CrossRef Pubmed Google scholar
[42]
Baker, B. J., Sheik, C. S., Taylor, C. A., Jain, S., Bhasi, A., Cavalcoli, J. D. and Dick, G. J. (2013) Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling. ISME J., 7, 1962–1973
CrossRef Pubmed Google scholar
[43]
Inskeep, W. P., Jay, Z. J., Herrgard, M. J., Kozubal, M. A., Rusch, D. B., Tringe, S. G., Macur, R. E., Jennings, R., Boyd, E. S., Spear, J. R., (2013) Phylogenetic and functional analysis of metagenome sequence from high-temperature archaeal habitats demonstrate linkages between metabolic potential and geochemistry. Front. Microbiol., 4, 95
CrossRef Pubmed Google scholar
[44]
Segata, N., Waldron, L., Ballarini, A., Narasimhan, V., Jousson, O. and Huttenhower, C. (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods, 9, 811–814
CrossRef Pubmed Google scholar
[45]
Jagtap, P., McGowan, T., Bandhakavi, S., Tu, Z. J., Seymour, S., Griffin, T. J. and Rudney, J. D. (2012) Deep metaproteomic analysis of human salivary supernatant. Proteomics, 12, 992–1001
CrossRef Pubmed Google scholar
[46]
Liu, B., Faller, L. L., Klitgord, N., Mazumdar, V., Ghodsi, M., Sommer, D. D., Gibbons, T. R., Treangen, T. J., Chang, Y. C., Li, S., (2012) Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One, 7, e37919
CrossRef Pubmed Google scholar
[47]
Warinner, C., Rodrigues, J. F., Vyas, R., Trachsel, C., Shved, N., Grossmann, J., Radini, A., Hancock, Y., Tito, R. Y., Fiddyment, S., (2014) Pathogens and host immunity in the ancient human oral cavity. Nat. Genet., 46, 336–344
CrossRef Pubmed Google scholar
[48]
Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience, 1, 18
CrossRef Pubmed Google scholar
[49]
Namiki, T., Hachiya, T., Tanaka, H. and Sakakibara, Y. (2012) MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res., 40, e155
CrossRef Pubmed Google scholar
[50]
Peng, Y., Leung, H. C., Yiu, S. M. and Chin, F. Y. (2011) Meta-IDBA: a de novo assembler for metagenomic data. Bioinformatics, 27, i94–i101
CrossRef Pubmed Google scholar
[51]
Zhu, W., Lomsadze, A. and Borodovsky, M. (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res., 38, e132
CrossRef Pubmed Google scholar
[52]
Delcher, A. L., Harmon, D., Kasif, S., White, O. and Salzberg, S. L. (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res., 27, 4636–4641
CrossRef Pubmed Google scholar
[53]
Fu, L., Niu, B., Zhu, Z., Wu, S. and Li, W. (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28, 3150–3152
CrossRef Pubmed Google scholar
[54]
Edgar, R. C. (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461
CrossRef Pubmed Google scholar
[55]
Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., Almeida, M., Arumugam, M., Batto, J. M., Kennedy, S., (2013) Richness of human gut microbiome correlates with metabolic markers. Nature, 500, 541–546
CrossRef Pubmed Google scholar
[56]
Tatusov, R. L., Koonin, E. V. and Lipman, D. J. (1997) A genomic perspective on protein families. Science, 278, 631–637
CrossRef Pubmed Google scholar
[57]
Overbeek, R., Begley, T., Butler, R. M., Choudhuri, J. V., Chuang, H. Y., Cohoon, M., de Crécy-Lagard, V., Diaz, N., Disz, T., Edwards, R., (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res., 33, 5691–5702
CrossRef Pubmed Google scholar
[58]
Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., Potter, S. C., Punta, M., Qureshi, M., Sangrador-Vegas, A., (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res., 44, D279–D285
CrossRef Pubmed Google scholar
[59]
Selengut, J. D., Haft, D. H., Davidsen, T., Ganapathy, A., Gwinn-Giglio, M., Nelson, W. C., Richter, A. R. and White, O. (2007) TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes. Nucleic Acids Res., 35, D260–D264
CrossRef Pubmed Google scholar
[60]
Huson, D. H., Auch, A. F., Qi, J. and Schuster, S. C. (2007) MEGAN analysis of metagenomic data. Genome Res., 17, 377–386
CrossRef Pubmed Google scholar
[61]
Zhou, X., Brown, C. J., Abdo, Z., Davis, C. C., Hansmann, M. A., Joyce, P., Foster, J. A. and Forney, L. J. (2007) Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women. ISME J., 1, 121–133
CrossRef Pubmed Google scholar
[62]
Brotman, R. M., Bradford, L. L., Conrad, M., Gajer, P., Ault, K., Peralta, L., Forney, L. J., Carlton, J. M., Abdo, Z. and Ravel, J. (2012) Association between Trichomonas vaginalis and vaginal bacterial community composition among reproductive-age women. Sex. Transm. Dis., 39, 807–812
CrossRef Pubmed Google scholar
[63]
Brotman, R. M., Shardell, M. D., Gajer, P., Fadrosh, D., Chang, K., Silver, M. I., Viscidi, R. P., Burke, A. E., Ravel, J. and Gravitt, P. E. (2014) Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause, 21, 450–458
CrossRef Pubmed Google scholar
[64]
Ravel, J., Gajer, P., Fu, L., Mauck, C. K., Koenig, S. S., Sakamoto, J., Motsinger-Reif, A. A., Doncel, G. F. and Zeichner, S. L. (2012) Twice-daily application of HIV microbicides alter the vaginal microbiota. MBio, 3, e00370-12
CrossRef Pubmed Google scholar
[65]
Mehta, S. D., Donovan, B., Weber, K. M., Cohen, M., Ravel, J., Gajer, P., Gilbert, D., Burgad, D. and Spear, G. T. (2015) The vaginal microbiota over an 8- to 10-year period in a cohort of HIV-infected and HIV-uninfected women. PLoS One, 10, e0116894
CrossRef Pubmed Google scholar
[66]
Romero, R., Hassan, S. S., Gajer, P., Tarca, A. L., Fadrosh, D. W., Nikita, L., Galuppi, M., Lamont, R. F., Chaemsaithong, P., Miranda, J., (2014) The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome, 2, 4
CrossRef Pubmed Google scholar
[67]
DiGiulio, D. B., Callahan, B. J., McMurdie, P. J., Costello, E. K., Lyell, D. J., Robaczewska, A., Sun, C. L., Goltsman, D. S., Wong, R. J., Shaw, G., (2015) Temporal and spatial variation of the human microbiota during pregnancy. Proc. Natl. Acad. Sci. USA, 112, 11060–11065
CrossRef Pubmed Google scholar
[68]
Huang, Y. E., Wang, Y., He, Y., Ji, Y., Wang, L. P., Sheng, H. F., Zhang, M., Huang, Q. T., Zhang, D. J., Wu, J. J., (2015) Homogeneity of the vaginal microbiome at the cervix, posterior fornix, and vaginal canal in pregnant Chinese women. Microb. Ecol., 69, 407–414
CrossRef Pubmed Google scholar
[69]
Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., (2011) Enterotypes of the human gut microbiome. Nature, 473, 174–180
CrossRef Pubmed Google scholar
[70]
Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science, 334, 105–108
CrossRef Pubmed Google scholar
[71]
Moeller, A. H., Degnan, P. H., Pusey, A. E., Wilson, M. L., Hahn, B. H. and Ochman, H. (2012) Chimpanzees and humans harbour compositionally similar gut enterotypes. Nat. Commun., 3, 1179
CrossRef Pubmed Google scholar
[72]
Jeffery, I. B., Claesson, M. J., O’Toole, P. W. and Shanahan, F. (2012) Categorization of the gut microbiota: enterotypes or gradients? Nat. Rev. Microbiol., 10, 591–592
CrossRef Pubmed Google scholar
[73]
Knights, D., Ward, T. L., McKinlay, C. E., Miller, H., Gonzalez, A., McDonald, D. and Knight, R. (2014) Rethinking “enterotypes”. Cell Host Microbe, 16, 433–437
CrossRef Pubmed Google scholar
[74]
Ding, T. and Schloss, P. D. (2014) Dynamics and associations of microbial community types across the human body. Nature, 509, 357–360
CrossRef Pubmed Google scholar
[75]
Franzosa, E. A., Huang, K., Meadow, J. F., Gevers, D., Lemon, K. P., Bohannan, B. J. and Huttenhower, C. (2015) Identifying personal microbiomes using metagenomic codes. Proc. Natl. Acad. Sci. USA, 112, E2930–E2938
CrossRef Pubmed Google scholar
[76]
Sharon, I., Morowitz, M. J., Thomas, B. C., Costello, E. K., Relman, D. A. and Banfield, J. F. (2013) Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res., 23, 111–120
CrossRef Pubmed Google scholar
[77]
Faith, J. J., Guruge, J. L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman, A. L., Clemente, J. C., Knight, R., Heath, A. C., Leibel, R. L., (2013) The long-term stability of the human gut microbiota. Science, 341, 1237439
CrossRef Pubmed Google scholar
[78]
Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. and Knight, R. (2012) Diversity, stability and resilience of the human gut microbiota. Nature, 489, 220–230
CrossRef Pubmed Google scholar
[79]
David, L. A., Materna, A. C., Friedman, J., Campos-Baptista, M. I., Blackburn, M. C., Perrotta, A., Erdman, S. E. and Alm, E. J. (2014) Host lifestyle affects human microbiota on daily timescales. Genome Biol., 15, R89
CrossRef Pubmed Google scholar
[80]
Smith, M. I., Yatsunenko, T., Manary, M. J., Trehan, I., Mkakosya, R., Cheng, J., Kau, A. L., Rich, S. S., Concannon, P., Mychaleckyj, J. C., (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science, 339, 548–554
CrossRef Pubmed Google scholar
[81]
Dewulf, E. M., Cani, P. D., Claus, S. P., Fuentes, S., Puylaert, P. G., Neyrinck, A. M., Bindels, L. B., de Vos, W. M., Gibson, G. R., Thissen, J. P., (2013) Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 62, 1112–1121
CrossRef Pubmed Google scholar
[82]
Cotillard, A., Kennedy, S. P., Kong, L. C., Prifti, E., Pons, N., Le Chatelier, E., Almeida, M., Quinquis, B., Levenez, F., Galleron, N., (2013) Dietary intervention impact on gut microbial gene richness. Nature, 500, 585–588
CrossRef Pubmed Google scholar
[83]
Adler, C.J., Dobney, K., Weyrich, L.S., Kaidonis, J., Walker, A.W., Haak, W., Bradshaw, C.J., Townsend, G., Soltysiak, A., Alt, K.W. (2013) Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet, 45, 450–455, 455e451
[84]
David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505, 559–563
CrossRef Pubmed Google scholar
[85]
Karlsson, F. H., Tremaroli, V., Nookaew, I., Bergström, G., Behre, C. J., Fagerberg, B., Nielsen, J. and Bäckhed, F. (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 498, 99–103
CrossRef Pubmed Google scholar
[86]
Rajilić-Stojanović, M., Biagi, E., Heilig, H. G., Kajander, K., Kekkonen, R. A., Tims, S. and de Vos, W. M. (2011) Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology, 141, 1792–1801
CrossRef Pubmed Google scholar
[87]
Saulnier, D. M., Riehle, K., Mistretta, T. A., Diaz, M. A., Mandal, D., Raza, S., Weidler, E. M., Qin, X., Coarfa, C., Milosavljevic, A., (2011) Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology, 141, 1782–1791
CrossRef Pubmed Google scholar
[88]
Gevers, D., Kugathasan, S., Denson, L. A., Vázquez-Baeza, Y., Van Treuren, W., Ren, B., Schwager, E., Knights, D., Song, S. J., Yassour, M., (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe, 15, 382–392
CrossRef Pubmed Google scholar
[89]
Zhu, L., Baker, S. S., Gill, C., Liu, W., Alkhouri, R., Baker, R. D. and Gill, S. R. (2013) Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology, 57, 601–609
CrossRef Pubmed Google scholar
[90]
Karlsson, F. H., Fåk, F., Nookaew, I., Tremaroli, V., Fagerberg, B., Petranovic, D., Bäckhed, F. and Nielsen, J. (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun., 3, 1245
CrossRef Pubmed Google scholar
[91]
Kostic, A. D., Gevers, D., Pedamallu, C. S., Michaud, M., Duke, F., Earl, A. M., Ojesina, A. I., Jung, J., Bass, A. J., Tabernero, J., (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res., 22, 292–298
CrossRef Pubmed Google scholar
[92]
Yu, J., Feng, Q., Wong, S. H., Zhang, D., Liang, Q. Y., Qin, Y., Tang, L., Zhao, H., Stenvang, J., Li, Y., (2015) Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut, gutjnl-2015-309800
CrossRef Pubmed Google scholar
[93]
Tyakht, A. V., Kostryukova, E. S., Popenko, A. S., Belenikin, M. S., Pavlenko, A. V., Larin, A. K., Karpova, I. Y., Selezneva, O. V., Semashko, T. A., Ospanova, E. A., (2013) Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun., 4, 2469
CrossRef Pubmed Google scholar
[94]
Koren, O., Goodrich, J. K., Cullender, T. C., Spor, A., Laitinen, K., Bäckhed, H. K., Gonzalez, A., Werner, J. J., Angenent, L. T., Knight, R., (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell, 150, 470–480
CrossRef Pubmed Google scholar
[95]
Belda-Ferre, P., Alcaraz, L. D., Cabrera-Rubio, R., Romero, H., Simón-Soro, A., Pignatelli, M. and Mira, A. (2012) The oral metagenome in health and disease. ISME J., 6, 46–56
CrossRef Pubmed Google scholar
[96]
Wang, J., Qi, J., Zhao, H., He, S., Zhang, Y., Wei, S. and Zhao, F. (2013) Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Sci. Rep., 3, 1843
Pubmed
[97]
Duran-Pinedo, A. E., Chen, T., Teles, R., Starr, J. R., Wang, X., Krishnan, K. and Frias-Lopez, J. (2014) Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J., 8, 1659–1672
CrossRef Pubmed Google scholar
[98]
Yang, L., Lu, X., Nossa, C. W., Francois, F., Peek, R. M. and Pei, Z. (2009) Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology, 137, 588–59
CrossRef Pubmed Google scholar
[99]
Tunney, M. M., Einarsson, G. G., Wei, L., Drain, M., Klem, E. R., Cardwell, C., Ennis, M., Boucher, R. C., Wolfgang, M. C. and Elborn, J. S. (2013) Lung microbiota and bacterial abundance in patients with bronchiectasis when clinically stable and during exacerbation. Am. J. Respir. Crit. Care Med., 187, 1118–1126
CrossRef Pubmed Google scholar
[100]
Marri, P.R., Stern, D.A., Wright, A.L., Billheimer, D. and Martinez, F.D. (2013) Asthma-associated differences in microbial composition of induced sputum. J. Allergy. Clin. Immunol., 131, 346–352. e3
[101]
Morris, A., Beck, J. M., Schloss, P. D., Campbell, T. B., Crothers, K., Curtis, J. L., Flores, S. C., Fontenot, A. P., Ghedin, E., Huang, L., (2013) Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med., 187, 1067–1075
CrossRef Pubmed Google scholar
[102]
Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., (2012) Human gut microbiome viewed across age and geography. Nature, 486, 222–227.
Pubmed
[103]
Claesson, M. J., Jeffery, I. B., Conde, S., Power, S. E., O’Connor, E. M., Cusack, S., Harris, H. M., Coakley, M., Lakshminarayanan, B., O’Sullivan, O., (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature, 488, 178–184
Pubmed
[104]
Stahringer, S. S., Clemente, J. C., Corley, R. P., Hewitt, J., Knights, D., Walters, W. A., Knight, R. and Krauter, K. S. (2012) Nurture trumps nature in a longitudinal survey of salivary bacterial communities in twins from early adolescence to early adulthood. Genome Res., 22, 2146–2152
CrossRef Pubmed Google scholar
[105]
Lozupone, C. A., Stombaugh, J., Gonzalez, A., Ackermann, G., Wendel, D., Vázquez-Baeza, Y., Jansson, J. K., Gordon, J. I. and Knight, R. (2013) Meta-analyses of studies of the human microbiota. Genome Res., 23, 1704–1714
CrossRef Pubmed Google scholar
[106]
Lax, S., Smith, D. P., Hampton-Marcell, J., Owens, S. M., Handley, K. M., Scott, N. M., Gibbons, S. M., Larsen, P., Shogan, B. D., Weiss, S., (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science, 345, 1048–1052
CrossRef Pubmed Google scholar
[107]
Kuleshov, V., Jiang, C., Zhou, W., Jahanbani, F., Batzoglou, S. and Snyder, M. (2016) Synthetic long-read sequencing reveals intraspecies diversity in the human microbiome. Nat. Biotechnol., 34, 64–69
CrossRef Pubmed Google scholar
[108]
Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Krogh Pedersen, H., (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528, 262–266
CrossRef Pubmed Google scholar
[109]
Liu, S., da Cunha, A. P., Rezende, R. M., Cialic, R., Wei, Z., Bry, L., Comstock, L. E., Gandhi, R. and Weiner, H. L. (2016) The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe., 19, 32–43
CrossRef Pubmed Google scholar
[110]
Cui, H. and Zhang, X. (2013) Alignment-free supervised classification of metagenomes by recursive SVM. BMC Genomics, 14, 641
CrossRef Pubmed Google scholar
[111]
Jiang, B., Song, K., Ren, J., Deng, M., Sun, F. and Zhang, X. (2012) Comparison of metagenomic samples using sequence signatures. BMC Genomics, 13, 730
CrossRef Pubmed Google scholar
[112]
Wang, Y., Liu, L., Chen, L., Chen, T. and Sun, F. (2014) Comparison of metatranscriptomic samples based on k-tuple frequencies. PLoS One, 9, e84348
CrossRef Pubmed Google scholar
[113]
Reyes, A., Haynes, M., Hanson, N., Angly, F. E., Heath, A. C., Rohwer, F. and Gordon, J. I. (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature, 466, 334–338
CrossRef Pubmed Google scholar
[114]
Kuss, S. K., Best, G. T., Etheredge, C. A., Pruijssers, A. J., Frierson, J. M., Hooper, L. V., Dermody, T. S. and Pfeiffer, J. K. (2011) Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science, 334, 249–252
CrossRef Pubmed Google scholar
[115]
Minot, S., Sinha, R., Chen, J., Li, H., Keilbaugh, S. A., Wu, G. D., Lewis, J. D. and Bushman, F. D. (2011) The human gut virome: inter-individual variation and dynamic response to diet. Genome Res., 21, 1616–1625
CrossRef Pubmed Google scholar
[116]
Minot, S., Bryson, A., Chehoud, C., Wu, G. D., Lewis, J. D. and Bushman, F. D. (2013) Rapid evolution of the human gut virome. Proc. Natl. Acad. Sci. USA, 110, 12450–12455
CrossRef Pubmed Google scholar
[117]
Edlund, A., Santiago-Rodriguez, T.M., Boehm, T.K. and Pride, D.T. (2015) Bacteriophage and their potential roles in the human oral cavity. 2015, 27423
[118]
Wang, J., Gao, Y. and Zhao, F. (2015) Phage-bacteria interaction network in human oral microbiome. Environ. Microbiol, 10.1111/1462-2920.12923
Pubmed
[119]
Bisanz, J. E. and Reid, G. (2011) Unraveling how probiotic yogurt works. Sci. Transl. Med., 3, 106ps41
CrossRef Pubmed Google scholar
[120]
Ghishan, F. K. and Kiela, P. R. (2011) From probiotics to therapeutics: another step forward? J. Clin. Invest., 121, 2149–2152
CrossRef Pubmed Google scholar
[121]
Borody, T. J. and Khoruts, A. (2012) Fecal microbiota transplantation and emerging applications. Nat. Rev. Gastroenterol. Hepatol., 9, 88–96
CrossRef Pubmed Google scholar
[122]
Lemon, K. P., Armitage, G. C., Relman, D. A. and Fischbach, M. A. (2012) Microbiota-targeted therapies: an ecological perspective. Sci. Transl. Med., 4, 137rv5
CrossRef Pubmed Google scholar
[123]
Sonnenburg, E. D., Smits, S. A., Tikhonov, M., Higginbottom, S. K., Wingreen, N. S. and Sonnenburg, J. L. (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529, 212–215
CrossRef Pubmed Google scholar
[124]
Chevalier, C., Stojanović, O., Colin, D. J., Suarez-Zamorano, N., Tarallo, V., Veyrat-Durebex, C., Rigo, D., Fabbiano, S., Stevanović, A., Hagemann, S., (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell, 163, 1360–1374
CrossRef Pubmed Google scholar
[125]
Zhang, X., Liu, S., Cui, H. and Chen, T.Reading the underlying information from massive metagenome sequencing data. To be published.
[126]
Bajaj, J. S., Betrapally, N. S. and Gillevet, P. M. (2015) Decompensated cirrhosis and microbiome interpretation. Nature, 525, E1–E2
CrossRef Pubmed Google scholar
[127]
Dubilier, N., McFall-Ngai, M. and Zhao, L. (2015) Microbiology: Create a global microbiome effort. Nature, 526, 631–634

ACKNOWLEDGEMENTS

This work has been funded in part by the National Basic Research Program of China (No. 2012CB316504) and NSFC (No. 61561146396).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Hongfei Cui, Yingxue Li and Xuegong Zhang declare that they have no conflict of interests. All data were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with Helsinki Declaration of 1975, as revised in 2000 (5).

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(787 KB)

Accesses

Citations

Detail

Sections
Recommended

/