Revisiting the false positive rate in detecting recent positive selection
Jinggong Xiang-Yu, Zongfeng Yang, Kun Tang, Haipeng Li
Revisiting the false positive rate in detecting recent positive selection
There is increasing interest in studying the molecular mechanisms of recent adaptations caused by positive selection in the genomics era. Such endeavors to detect recent positive selection, however, have been severely handicapped by false positives due to the confounding impact of demography and the population structure. To reduce false positives, it is critical to conduct a functional analysis to identify the true candidate genes/mutations from those that are filtered through neutrality tests. However, the extremely high cost of such functional analysis may restrict studies within a small number of model species. In particular, when the false positive rate of neutrality tests is high, the efficiency of the functional analysis will also be very low. Therefore, although the recent improvements have been made in the (joint) inference of demography and selection, our ultimate goal, which is to understand the mechanism of adaptation generally in a wide variety of natural populations, may not be achieved using the currently available approaches. More attention should thus be spent on the development of more reliable tests that could not only free themselves from the confounding impact of demography and the population structure but also have reasonable power to detect selection.
recent positive selection / selective sweep / demography / population structure / false positive
[1] |
Pulvers, J. N., Journiac, N., Arai, Y., and Nardelli, J (2015) MCPH1: a window into brain development and evolution. Front. Cell. Neurosci., 10.3389/fncel.2015.00092
|
[2] |
Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S. L., Wiebe, V., Kitano, T., Monaco, A. P. and Pääbo, S. (2002) Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418, 869–872
CrossRef
Pubmed
Google scholar
|
[3] |
Swallow, D. M. (2003) Genetics of lactase persistence and lactose intolerance. Annu. Rev. Genet., 37, 197–219
CrossRef
Pubmed
Google scholar
|
[4] |
Poulter, M., Hollox, E., Harvey, C. B., Mulcare, C., Peuhkuri, K., Kajander, K., Sarner, M., Korpela, R. and Swallow, D. M. (2003) The causal element for the lactase persistence/non-persistence polymorphism is located in a 1 Mb region of linkage disequilibrium in Europeans. Ann. Hum. Genet., 67, 298–311
CrossRef
Pubmed
Google scholar
|
[5] |
Bersaglieri, T., Sabeti, P. C., Patterson, N., Vanderploeg, T., Schaffner, S. F., Drake, J. A., Rhodes, M., Reich, D. E. and Hirschhorn, J. N. (2004) Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet., 74, 1111–1120
CrossRef
Pubmed
Google scholar
|
[6] |
Nielsen, R. (2009) Adaptionism-30 years after Gould and Lewontin. Evolution, 63, 2487–2490
CrossRef
Pubmed
Google scholar
|
[7] |
Hurst, L. D. (2009) Fundamental concepts in genetics: genetics and the understanding of selection. Nat. Rev. Genet., 10, 83–93
CrossRef
Pubmed
Google scholar
|
[8] |
Tajima, F. (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595
Pubmed
|
[9] |
Fu, Y.-X. (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925
Pubmed
|
[10] |
Fay, J. C. and Wu, C.-I. (2000) Hitchhiking under positive Darwinian selection. Genetics, 155, 1405–1413
Pubmed
|
[11] |
Smith, J. M. and Haigh, J. (1974) The hitch-hiking effect of a favourable gene. Genet. Res., 23, 23–35
CrossRef
Pubmed
Google scholar
|
[12] |
Galtier, N., Depaulis, F. and Barton, N. H. (2000) Detecting bottlenecks and selective sweeps from DNA sequence polymorphism. Genetics, 155, 981–987
Pubmed
|
[13] |
Kim, Y. and Stephan, W. (2002) Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics, 160, 765–777
Pubmed
|
[14] |
Nielsen, R., Williamson, S., Kim, Y., Hubisz, M. J., Clark, A. G. and Bustamante, C. (2005) Genomic scans for selective sweeps using SNP data. Genome Res., 15, 1566–1575
CrossRef
Pubmed
Google scholar
|
[15] |
Li, H. and Stephan, W. (2005) Maximum-likelihood methods for detecting recent positive selection and localizing the selected site in the genome. Genetics, 171, 377–384
CrossRef
Pubmed
Google scholar
|
[16] |
Fu, Y.-X. and Li, W.-H. (1993) Statistical tests of neutrality of mutations. Genetics, 133, 693–709
Pubmed
|
[17] |
Sabeti, P. C., Reich, D. E., Higgins, J. M., Levine, H. Z. P., Richter, D. J., Schaffner, S. F., Gabriel, S. B., Platko, J. V., Patterson, N. J., McDonald, G. J.,
CrossRef
Pubmed
Google scholar
|
[18] |
Zeng, K., Fu, Y.-X., Shi, S. and Wu, C.-I. (2006) Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics, 174, 1431–1439
CrossRef
Pubmed
Google scholar
|
[19] |
MacCallum, C. and Hill, E. (2006) Being positive about selection. PLoS Biol., 4, e87
CrossRef
Pubmed
Google scholar
|
[20] |
Bamshad, M. and Wooding, S. P. (2003) Signatures of natural selection in the human genome. Nat. Rev. Genet., 4, 99–111
CrossRef
Pubmed
Google scholar
|
[21] |
Kauer, M. O., Dieringer, D. and Schlötterer, C. (2003) A microsatellite variability screen for positive selection associated with the “out of Africa” habitat expansion of Drosophila melanogaster. Genetics, 165, 1137–1148
Pubmed
|
[22] |
Sabeti, P. C., Schaffner, S. F., Fry, B., Lohmueller, J., Varilly, P., Shamovsky, O., Palma, A., Mikkelsen, T. S., Altshuler, D. and Lander, E. S. (2006) Positive natural selection in the human lineage. Science, 312, 1614–1620
CrossRef
Pubmed
Google scholar
|
[23] |
Pavlidis, P., Hutter, S. and Stephan, W. (2008) A population genomic approach to map recent positive selection in model species. Mol. Ecol., 17, 3585–3598
Pubmed
|
[24] |
Nielsen, R., Hellmann, I., Hubisz, M., Bustamante, C. and Clark, A. G. (2007) Recent and ongoing selection in the human genome. Nat. Rev. Genet., 8, 857–868
CrossRef
Pubmed
Google scholar
|
[25] |
Vitti, J. J., Grossman, S. R. and Sabeti, P. C. (2013) Detecting natural selection in genomic data. Annu. Rev. Genet., 47, 97–120
CrossRef
Google scholar
|
[26] |
Bank, C., Ewing, G. B., Ferrer-Admettla, A., Foll, M. and Jensen, J. D. (2014) Thinking too positive? Revisiting current methods of population genetic selection inference. Trends Genet., 30, 540–546
CrossRef
Pubmed
Google scholar
|
[27] |
Pool, J. E., Hellmann, I., Jensen, J. D. and Nielsen, R. (2010) Population genetic inference from genomic sequence variation. Genome Res., 20, 291–300
CrossRef
Pubmed
Google scholar
|
[28] |
Chen, H., Patterson, N. and Reich, D. (2010) Population differentiation as a test for selective sweeps. Genome Res., 20, 393–402
CrossRef
Pubmed
Google scholar
|
[29] |
Karlsson, E. K., Kwiatkowski, D. P. and Sabeti, P. C. (2014) Natural selection and infectious disease in human populations. Nat. Rev. Genet., 15, 379–393
CrossRef
Pubmed
Google scholar
|
[30] |
Mathieson, I., Lazaridis, I., Rohland, N., Mallick, S., Patterson, N., Roodenberg, S. A., Harney, E., Stewardson, K., Fernandes, D., Novak, M.,
CrossRef
Pubmed
Google scholar
|
[31] |
Tajima, F. (1989) The effect of change in population size on DNA polymorphism. Genetics, 123, 597–601
Pubmed
|
[32] |
Jensen, J. D., Kim, Y., DuMont, V. B., Aquadro, C. F. and Bustamante, C. D. (2005) Distinguishing between selective sweeps and demography using DNA polymorphism data. Genetics, 170, 1401–1410
CrossRef
Pubmed
Google scholar
|
[33] |
Przeworski, M. (2002) The signature of positive selection at randomly chosen loci. Genetics, 160, 1179–1189
Pubmed
|
[34] |
Hudson, R. R. (1990) Gene genealogies and the coalescent process. In Oxford Surveys in Evolutionary Biology. Vol. 7, D. Futuyma and J. Antonovics, Editors. 1–44 New York: Oxford University Press
|
[35] |
Hudson, R. R. (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics, 18, 337–338
CrossRef
Pubmed
Google scholar
|
[36] |
Achaz, G. (2009) Frequency spectrum neutrality tests: one for all and all for one. Genetics, 183, 249–258
CrossRef
Pubmed
Google scholar
|
[37] |
Li, H. (2011) A new test for detecting recent positive selection that is free from the confounding impacts of demography. Mol. Biol. Evol., 28, 365–375
CrossRef
Pubmed
Google scholar
|
[38] |
Cornuet, J. M. and Luikart, G. (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144, 2001–2014
Pubmed
|
[39] |
Schlötterer, C., Kauer, M. and Dieringer, D. (2004) Allele excess at neutrally evolving microsatellites and the implications for tests of neutrality. Proc. Biol. Sci., 271, 869–874
CrossRef
Pubmed
Google scholar
|
[40] |
Li, H. and Wiehe, T. (2013) Coalescent tree imbalance and a simple test for selective sweeps based on microsatellite variation. PLoS Comput. Biol., 9, e1003060
CrossRef
Pubmed
Google scholar
|
[41] |
Thornton, K. R. and Jensen, J. D. (2007) Controlling the false-positive rate in multilocus genome scans for selection. Genetics, 175, 737–750
CrossRef
Pubmed
Google scholar
|
[42] |
Li, H. and Stephan, W. (2006) Inferring the demographic history and rate of adaptive substitution in Drosophila. PLoS Genet., 2, e166
CrossRef
Pubmed
Google scholar
|
[43] |
Parsch, J., Meiklejohn, C. D. and Hartl, D. L. (2001) Patterns of DNA sequence variation suggest the recent action of positive selection in the janus-ocnus region of Drosophila simulans. Genetics, 159, 647–657
Pubmed
|
[44] |
Stephan, W., Song, Y. S. and Langley, C. H. (2006) The hitchhiking effect on linkage disequilibrium between linked neutral loci. Genetics, 172, 2647–2663
CrossRef
Pubmed
Google scholar
|
[45] |
McVean, G. (2007) The structure of linkage disequilibrium around a selective sweep. Genetics, 175, 1395–1406
CrossRef
Pubmed
Google scholar
|
[46] |
Kim, Y. and Nielsen, R. (2004) Linkage disequilibrium as a signature of selective sweeps. Genetics, 167, 1513–1524
CrossRef
Pubmed
Google scholar
|
[47] |
Jensen, J. D., Thornton, K. R., Bustamante, C. D. and Aquadro, C. F. (2007) On the utility of linkage disequilibrium as a statistic for identifying targets of positive selection in nonequilibrium populations. Genetics, 176, 2371–2379
CrossRef
Pubmed
Google scholar
|
[48] |
Akey, J. M., Zhang, G., Zhang, K., Jin, L. and Shriver, M. D. (2002) Interrogating a high-density SNP map for signatures of natural selection. Genome Res., 12, 1805–1814
CrossRef
Pubmed
Google scholar
|
[49] |
Pickrell, J. K., Coop, G., Novembre, J., Kudaravalli, S., Li, J. Z., Absher, D., Srinivasan, B. S., Barsh, G. S., Myers, R. M., Feldman, M. W.,
CrossRef
Pubmed
Google scholar
|
[50] |
Kayser, M., Brauer, S. and Stoneking, M. (2003) A genome scan to detect candidate regions influenced by local natural selection in human populations. Mol. Biol. Evol., 20, 893–900
CrossRef
Pubmed
Google scholar
|
[51] |
Storz, J. F., Payseur, B. A. and Nachman, M. W. (2004) Genome scans of DNA variability in humans reveal evidence for selective sweeps outside of Africa. Mol. Biol. Evol., 21, 1800–1811
CrossRef
Pubmed
Google scholar
|
[52] |
Carlson, C. S., Thomas, D. J., Eberle, M. A., Swanson, J. E., Livingston, R. J., Rieder, M. J. and Nickerson, D. A. (2005) Genomic regions exhibiting positive selection identified from dense genotype data. Genome Res., 15, 1553–1565
CrossRef
Pubmed
Google scholar
|
[53] |
Voight, B. F., Kudaravalli, S., Wen, X. and Pritchard, J. K. (2006) A map of recent positive selection in the human genome. PLoS Biol., 4, e72
CrossRef
Pubmed
Google scholar
|
[54] |
Tang, K., Thornton, K. R. and Stoneking, M. (2007) A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biol., 5, e171
CrossRef
Pubmed
Google scholar
|
[55] |
Sabeti, P. C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., Cotsapas, C., Xie, X., Byrne, E. H., McCarroll, S. A., Gaudet, R.,
CrossRef
Pubmed
Google scholar
|
[56] |
Li, J. Z., Absher, D. M., Tang, H., Southwick, A. M., Casto, A. M., Ramachandran, S., Cann, H. M., Barsh, G. S., Feldman, M., Cavalli-Sforza, L. L.,
CrossRef
Pubmed
Google scholar
|
[57] |
Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H. Y.,
CrossRef
Pubmed
Google scholar
|
[58] |
Reich, D., Green, R. E., Kircher, M., Krause, J., Patterson, N., Durand, E. Y., Viola, B., Briggs, A. W., Stenzel, U., Johnson, P. L. F.,
CrossRef
Pubmed
Google scholar
|
[59] |
Akey, J. M. (2009) Constructing genomic maps of positive selection in humans: where do we go from here? Genome Res., 19, 711–722
CrossRef
Pubmed
Google scholar
|
[60] |
Fu, W. Q. and Akey, J. M. (2013) Selection and adaptation in the human genome. Annu. Rev. Genom. Hum. G.,14,467-489
CrossRef
Google scholar
|
[61] |
Huerta-Sánchez, E., Jin, X., Asan, , Bianba, Z., Peter, B. M., Vinckenbosch, N., Liang, Y., Yi, X., He, M., SomelM.,
CrossRef
Pubmed
Google scholar
|
[62] |
Teschke, M., Mukabayire, O., Wiehe, T. and Tautz, D. (2008) Identification of selective sweeps in closely related populations of the house mouse based on microsatellite scans. Genetics, 180, 1537–1545
CrossRef
Pubmed
Google scholar
|
[63] |
Glinka, S., Ometto, L., Mousset, S., Stephan, W. and De Lorenzo, D. (2003) Demography and natural selection have shaped genetic variation in Drosophila melanogaster: a multi-locus approach. Genetics, 165, 1269–1278
Pubmed
|
[64] |
Ometto, L., Glinka, S., De Lorenzo, D. and Stephan, W. (2005) Inferring the effects of demography and selection on Drosophila melanogaster populations from a chromosome-wide scan of DNA variation. Mol. Biol. Evol., 22, 2119–2130
CrossRef
Pubmed
Google scholar
|
[65] |
Emerson, J. J., Cardoso-Moreira, M., Borevitz, J. O. and Long, M. (2008) Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science, 320, 1629–1631
CrossRef
Pubmed
Google scholar
|
[66] |
Pavlidis, P., Jensen, J. D., Stephan, W. and Stamatakis, A. (2012) A critical assessment of storytelling: gene ontology categories and the importance of validating genomic scans. Mol. Biol. Evol., 29, 3237–3248
CrossRef
Pubmed
Google scholar
|
[67] |
Schmid, K. J., Ramos-Onsins, S., Ringys-Beckstein, H., Weisshaar, B. and Mitchell-Olds, T. (2005) A multilocus sequence survey in Arabidopsis thaliana reveals a genome-wide departure from a neutral model of DNA sequence polymorphism. Genetics, 169, 1601–1615
CrossRef
Pubmed
Google scholar
|
[68] |
Borevitz, J. O., Hazen, S. P., Michael, T. P., Morris, G. P., Baxter, I. R., Hu, T. T., Chen, H., Werner, J. D., Nordborg, M., Salt, D. E.,
CrossRef
Pubmed
Google scholar
|
[69] |
Stajich, J. E. and Hahn, M. W. (2005) Disentangling the effects of demography and selection in human history. Mol. Biol. Evol., 22, 63–73
CrossRef
Pubmed
Google scholar
|
[70] |
Wang, E. T., Kodama, G., Baldi, P. and Moyzis, R. K. (2006) Global landscape of recent inferred Darwinian selection for Homo sapiens. Proc. Natl. Acad. Sci. USA, 103, 135–140
CrossRef
Pubmed
Google scholar
|
[71] |
Kuehl, P., Zhang, J., Lin, Y., Lamba, J., Assem, M., Schuetz, J., Watkins, P. B., Daly, A., Wrighton, S. A., Hall, S. D.,
CrossRef
Pubmed
Google scholar
|
[72] |
Lamason, R. L., Mohideen, M. A., Mest, J. R., Wong, A. C., Norton, H. L., Aros, M. C., Jurynec, M. J., Mao, X., Humphreville, V. R., Humbert, J. E.,
CrossRef
Pubmed
Google scholar
|
[73] |
Lewontin, R. C. and Krakauer, J. (1973) Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics, 74, 175–195
Pubmed
|
[74] |
Beaumont, M. and Nichols, R. A. (1996) Evaluating loci for use in the genetic analysis of population structure. Proc. R. Soc. Lond. B Biol. Sci., 263, 1619–1626
CrossRef
Google scholar
|
[75] |
Beaumont, M. A. and Balding, D. J. (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol. Ecol., 13, 969–980
CrossRef
Pubmed
Google scholar
|
[76] |
Nei, M. and Maruyama, T. (1975) Letters to the editors: Lewontin-Krakauer test for neutral genes. Genetics, 80, 395
|
[77] |
Charlesworth, B., Nordborg, M. and Charlesworth, D. (1997) The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet. Res., 70, 155–174
CrossRef
Pubmed
Google scholar
|
[78] |
Stephan, W., Xing, L., Kirby, D. A. and Braverman, J. M. (1998) A test of the background selection hypothesis based on nucleotide data from Drosophila ananassae. Proc. Natl. Acad. Sci. USA, 95, 5649–5654
CrossRef
Pubmed
Google scholar
|
[79] |
Weir, B. S., Cardon, L. R., Anderson, A. D., Nielsen, D. M. and Hill, W. G. (2005) Measures of human population structure show heterogeneity among genomic regions. Genome Res., 15, 1468–1476
CrossRef
Pubmed
Google scholar
|
[80] |
Di Rienzo, A., Donnelly, P., Toomajian, C., Sisk, B., Hill, A., Petzl-Erler, M. L., Haines, G. K. and Barch, D. H. (1998) Heterogeneity of microsatellite mutations within and between loci, and implications for human demographic histories. Genetics, 148, 1269–1284
Pubmed
|
[81] |
Harr, B., Zangerl, B., Brem, G. and Schlötterer, C. (1998) Conservation of locus-specific microsatellite variability across species: a comparison of two Drosophila sibling species, D. melanogaster and D. simulans. Mol. Biol. Evol., 15, 176–184
CrossRef
Pubmed
Google scholar
|
[82] |
Schlötterer, C. (2002) A microsatellite-based multilocus screen for the identification of local selective sweeps. Genetics, 160, 753–763
Pubmed
|
[83] |
Wiehe, T., Nolte, V., Zivkovic, D. and Schlötterer, C. (2007) Identification of selective sweeps using a dynamically adjusted number of linked microsatellites. Genetics, 175, 207–218
CrossRef
Pubmed
Google scholar
|
[84] |
Grossman, S. R., Shlyakhter, I., Karlsson, E. K., Byrne, E. H., Morales, S., Frieden, G., Hostetter, E., Angelino, E., Garber, M., Zuk, O.,
CrossRef
Pubmed
Google scholar
|
[85] |
Grossman, S. R., Andersen, K. G., Shlyakhter, I., Tabrizi, S., Winnicki, S., Yen, A., Park, D. J., Griesemer, D., Karlsson, E. K., Wong, S. H.,
CrossRef
Pubmed
Google scholar
|
[86] |
Lin, K., Li, H., Schlötterer, C. and Futschik, A. (2011) Distinguishing positive selection from neutral evolution: boosting the performance of summary statistics. Genetics, 187, 229–244
CrossRef
Pubmed
Google scholar
|
[87] |
Pybus, M., Luisi, P., Dall'Olio, G., Uzkudun, M., Laayouni, H., Bertranpetit, J. and Engelken, J. (2015) Hierarchical boosting: a machine-learning framework to detect and classify hard selective sweeps in human populations. Bioinformatics, 31, 3946–3952
CrossRef
Google scholar
|
[88] |
Markovtsova, L., Marjoram, P. and Tavaré, S. (2000) The effects of rate variation on ancestral inference in the coalescent. Genetics, 156, 1427–1436
Pubmed
|
[89] |
Aris-Brosou, S. and Excoffier, L. (1996) The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol. Biol. Evol., 13, 494–504
CrossRef
Pubmed
Google scholar
|
[90] |
Huber, C. D., DeGiorgio, M., Hellmann, I. and Nielsen, R. (2016) Detecting recent selective sweeps while controlling for mutation rate and background selection. Mol. Ecol., 25, 142–156
CrossRef
Pubmed
Google scholar
|
[91] |
O’Reilly, P. F., Birney, E. and Balding, D. J. (2008) Confounding between recombination and selection, and the Ped/Pop method for detecting selection. Genome Res., 18, 1304–1313
CrossRef
Pubmed
Google scholar
|
[92] |
Reed, F. A. and Tishkoff, S. A. (2006) Positive selection can create false hotspots of recombination. Genetics, 172, 2011–2014
CrossRef
Pubmed
Google scholar
|
[93] |
Li, J., Li, H., Jakobsson, M., Li, S., Sjödin, P. and Lascoux, M. (2012) Joint analysis of demography and selection in population genetics: where do we stand and where could we go? Mol. Ecol., 21, 28–44
CrossRef
Pubmed
Google scholar
|
[94] |
Stephan, W. (2016) Signatures of positive selection: from selective sweeps at individual loci to subtle allele frequency changes in polygenic adaptation. Mol. Ecol., 25, 79–88
CrossRef
Pubmed
Google scholar
|
[95] |
Kelley, J. L. and Swanson, W. J. (2008) Positive selection in the human genome: from genome scans to biological significance. Annu. Rev. Genomics Hum. Genet., 9, 143–160
CrossRef
Pubmed
Google scholar
|
[96] |
Zhai, W., Nielsen, R. and Slatkin, M. (2009) An investigation of the statistical power of neutrality tests based on comparative and population genetic data. Mol. Biol. Evol., 26, 273–283
CrossRef
Pubmed
Google scholar
|
[97] |
Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. and Bustamante, C. D. (2009) Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet., 5, e1000695
CrossRef
Pubmed
Google scholar
|
[98] |
Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. and Foll, M. (2013) Robust demographic inference from genomic and SNP data. PLoS Genet., 9, e1003905
CrossRef
Pubmed
Google scholar
|
[99] |
Nielsen, R., Hubisz, M. J., Hellmann, I., Torgerson, D., Andrés, A. M., Albrechtsen, A., Gutenkunst, R., Adams, M. D., Cargill, M., Boyko, A.,
CrossRef
Pubmed
Google scholar
|
[100] |
Fijarczyk, A. and Babik, W. (2015) Detecting balancing selection in genomes: limits and prospects. Mol. Ecol., 24, 3529–3545
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |