CASHeart: A database of single cells chromatin accessibility for the human heart

Qun Jiang , Xiaoyang Chen , Zijing Gao , Jinmeng Jia , Shengquan Chen , Rui Jiang

Quant. Biol. ›› 2025, Vol. 13 ›› Issue (2) : e90

PDF (4911KB)
Quant. Biol. ›› 2025, Vol. 13 ›› Issue (2) : e90 DOI: 10.1002/qub2.90
DATA ARTICLE

CASHeart: A database of single cells chromatin accessibility for the human heart

Author information +
History +
PDF (4911KB)

Abstract

Human heart single-cell chromatin accessibility data reveal the diversity and complexity of heart cells at the epigenomic level, providing a detailed perspective for understanding the molecular mechanisms of heart development, function maintenance, disease occurrence, and therapeutic response. However, the current human heart single-cell chromatin accessibility data are relatively scarce, lacking large-scale, high-quality, and integrated datasets. To facilitate research and utilization, we have established a comprehensive database of human heart single-cell chromatin accessibility data, CASHeart. This database collects sequencing fragment files from publicly available papers, processes and counts data for 212,600 human heart cells, and provides transformed gene activity scores. All data are accessible for browsing and download via the online platform. We demonstrate that the data provided by CASHeart reveal heart cell type heterogeneity more effectively than the original data, aiding in the analysis of differentially accessible chromatin regions and activated genes. Moreover, we show that the incorporation of single-cell chromatin accessibility data and transformed gene activity scores from CASHeart as reference datasets enhances the analysis of heart single-cell epigenomic and transcriptomic data, whereas the unified chromatin accessible regions provided by CASHeart can assist in the study of gene regulation and genetic variation in human cardiac cells.

Keywords

human heart / chromatin accessibility / single cell / database

Cite this article

Download citation ▾
Qun Jiang, Xiaoyang Chen, Zijing Gao, Jinmeng Jia, Shengquan Chen, Rui Jiang. CASHeart: A database of single cells chromatin accessibility for the human heart. Quant. Biol., 2025, 13(2): e90 DOI:10.1002/qub2.90

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peate I . The heart: an amazing organ. Br J Healthc Assistants. 2021; 15 (2): 72- 7.

[2]

Thornburg KL . The programming of cardiovascular disease. J Dev Origins Health Dis. 2015; 6 (5): 366- 76.

[3]

Hall AW , Chaffin M , Roselli C , Lin H , Lubitz SA , Bianchi V , et al. Epigenetic analyses of human left atrial tissue identifies gene networks underlying atrial fibrillation. Circul: Genom Precis Med. 2020; 13 (6): e003085.

[4]

Chen S , Liu Q , Cui X , Feng Z , Li C , Wang X , et al. OpenAnnotate: a web server to annotate the chromatin accessibility of genomic regions. Nucleic Acids Res. 2021; 49 (W1): W483- 90.

[5]

Chen X , Chen S , Song S , Gao Z , Hou L , Zhang X , et al. Cell type annotation of single-cell chromatin accessibility data via supervised Bayesian embedding. Nat Mach Intell. 2022; 4 (2): 116- 26.

[6]

Gao Z , Chen X , Li Z , Cui X , Jiang Q , Li K , et al. scEpiTools: a database to comprehensively interrogate analytic tools for single-cell epigenomic data. J Genet Genom=Yi Chuan xue bao. 2023; (23): 00205. p. S1673- 8527.

[7]

Zhang K , Hocker JD , Miller M , Hou X , Chiou J , Poirion OB , et al. A single-cell atlas of chromatin accessibility in the human genome. Cell. 2021; 184 (24): 5985- 6001.e19.

[8]

Domcke S , Hill AJ , Daza RM , Cao J , O'Day DR , Pliner HA , et al. A human cell atlas of fetal chromatin accessibility. Science. 2020; 370 (6518): eaba7612.

[9]

Kanemaru K , Cranley J , Muraro D , Miranda AMA , Ho SY , Wilbrey-Clark A , et al. Spatially resolved multiomics of human cardiac niches. Nature. 2023; 619 (7971): 801- 10.

[10]

Ameen M , Sundaram L , Shen M , Banerjee A , Kundu S , Nair S , et al. Integrative single-cell analysis of cardiogenesis identifies developmental trajectories and non-coding mutations in congenital heart disease. Cell. 2022; 185 (26): 4937- 53.e23.

[11]

Zhang K , Zemke NR , Armand EJ , Ren B . A fast, scalable and versatile tool for analysis of single-cell omics data. Nat Methods. 2024; 21 (2): 217- 27.

[12]

Zhang Y , Liu T , Meyer CA , Eeckhoute J , Johnson DS , Bernstein BE , et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 2008; 9: 1- 9.

[13]

Danese A , Richter ML , Chaichoompu K , Fischer DS , Theis FJ , Colomé-Tatché M . EpiScanpy: integrated single-cell epigenomic analysis. Nat Commun. 2021; 12 (1): 5228.

[14]

Becht E , McInnes L , Healy J , Dutertre CA , Kwok IWH , Ng LG , et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 2019; 37 (1): 38- 44.

[15]

Zandigohar M , Dai Y . Information retrieval in single cell chromatin analysis using TF-IDF transformation methods. In: 2022 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE; 2022.

[16]

Abdi H , Williams LJ . Principal component analysis. Wiley interdisciplinary reviews: Comput Stat. 2010; 2 (4): 433- 59.

[17]

Korsunsky I , Millard N , Fan J , Slowikowski K , Zhang F , Wei K , et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019; 16 (12): 1289- 96.

[18]

Traag VA , Waltman L , Van Eck NJ . From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep. 2019; 9 (1): 1- 12.

[19]

Gromova T , Gehred ND , Vondriska TM . Single-cell transcriptomes in the heart: when every epigenome counts. Cardiovasc Res. 2023; 119 (1): 64- 78.

[20]

Howe KL , Achuthan P , Allen J , Allen J , Alvarez-Jarreta J , Amode MR , et al. Ensembl 2021. Nucleic Acids Res. 2021; 49 (D1): D884- 91.

[21]

Bogomolovas J , Brohm K , Čelutkienė J , Balčiūnaitė G , Bironaitė D , Bukelskienė V , et al. Induction of Ankrd1 in dilated cardiomyopathy correlates with the heart failure progression. BioMed Res Int. 2015; 2015 (1): 273936- 9.

[22]

Koopmann TT , Jamshidi Y , Naghibi-Sistani M , van der Klift HM , Birjandi H , Al-Hassnan Z , et al. Biallelic loss of LDB3 leads to a lethal pediatric dilated cardiomyopathy. Eur J Hum Genet. 2023; 31 (1): 97- 104.

[23]

Stuart T , Butler A , Hoffman P , Hafemeister C , Papalexi E , Mauck WM, III , et al. Comprehensive integration of single-cell data. Cell. 2019; 177 (7): 1888- 902.e21.

[24]

Chen S , Yan G , Zhang W , Li J , Jiang R , Lin Z . RA3 is a reference-guided approach for epigenetic characterization of single cells. Nat Commun. 2021; 12 (1): 2177.

[25]

Hocker JD , Poirion OB , Zhu F , Buchanan J , Zhang K , Chiou J , et al. Cardiac cell type-specific gene regulatory programs and disease risk association. Sci Adv. 2021; 7 (20): eabf1444.

[26]

Cheng C , Chen W , Jin H , Chen X . A review of single-cell RNA-Seq annotation, integration, and cell-cell communication. Cells. 2023; 12 (15): 1970.

[27]

Brown JW , Calixto CP , Zhang R . High-quality reference transcript datasets hold the key to transcript-specific RNA-sequencing analysis in plants. New Phytol. 2017; 213 (2): 525- 30.

[28]

Shengquan C , Boheng Z , Xiaoyang C , Xuegong Z , Rui J . stPlus: a reference-based method for the accurate enhancement of spatial transcriptomics. Bioinformatics. 2021; 37 (Suppl ment_1): i299- 307.

[29]

Pliner HA , Packer JS , McFaline-Figueroa JL , Cusanovich DA , Daza RM , Aghamirzaie D , et al. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. Mol Cell. 2018; 71 (5): 858- 71.e8.

[30]

Safran M , Dalah I , Alexander J , Rosen N , Iny Stein T , Shmoish M , et al. GeneCards Version 3: the human gene integrator. Database. 2010; 2010 (0): baq020.

[31]

Wang Y , Jiang R , Wong WH . Modeling the causal regulatory network by integrating chromatin accessibility and transcriptome data. Natl Sci Rev. 2016; 3 (2): 240- 51.

[32]

Bulik-Sullivan BK , Loh PR , Finucane HK , Ripke S , Yang J , Patterson N , et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015; 47 (3): 291- 5.

[33]

Slowikowski K , Hu X , Raychaudhuri S . SNPsea: an algorithm to identify cell types, tissues and pathways affected by risk loci. Bioinformatics. 2014; 30 (17): 2496- 7.

[34]

Yang A , Alankarage D , Cuny H , Ip EK , Almog M , Lu J , et al. CHDgene: a curated database for congenital heart disease genes. Circul: Genom Precis Med. 2022; 15 (3): e003539.

[35]

Wang F , Bai X , Wang Y , Jiang Y , Ai B , Zhang Y , et al. ATACdb: a comprehensive human chromatin accessibility database. Nucleic Acids Res. 2021; 49 (D1): D55- 64.

[36]

Zheng R , Wan C , Mei S , Qin Q , Wu Q , Sun H , et al. Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res. 2019; 47 (D1): D729- 35.

[37]

Virshup I , Rybakov S , Theis FJ , Angerer P , Wolf FA . anndata: access and store annotated data matrices. J Open Source Softw. 2024; 9 (101): 4371.

[38]

Wolf FA , Angerer P , Theis FJ . SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018; 19: 1- 5.

[39]

Quinlan AR , Hall IM . BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26 (6): 841- 2.

[40]

Li S , Tang S , Wang Y , Jia Y , Chen S . Accurate cell type annotation for single-cell chromatin accessibility data via contrastive learning and reference guidance. Quant Biol. 2024; 12 (1): 85- 99.

[41]

Song S , Cui H , Chen S , Liu Q , Jiang R . EpiFIT: functional interpretation of transcription factors based on combination of sequence and epigenetic information. Quant Biol. 2019; 7 (3): 233- 43.

[42]

Su AI , Wiltshire T , Batalov S , Lapp H , Ching KA , Block D , et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA. 2004; 101 (16): 6062- 7.

[43]

Cui X , Chen X , Li Z , Gao Z , Chen S , Jiang R . Discrete latent embedding of single-cell chromatin accessibility sequencing data for uncovering cell heterogeneity. Nat Comput Sci. 2024; 4 (5): 1- 14.

RIGHTS & PERMISSIONS

The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (4911KB)

339

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/