Impact of lipid asymmetry on membrane biophysical properties: Insights from molecular dynamics simulations

Yong Zhang , Jizhong Lou

Quant. Biol. ›› 2025, Vol. 13 ›› Issue (2) : e89

PDF (1763KB)
Quant. Biol. ›› 2025, Vol. 13 ›› Issue (2) : e89 DOI: 10.1002/qub2.89
RESEARCH ARTICLE

Impact of lipid asymmetry on membrane biophysical properties: Insights from molecular dynamics simulations

Author information +
History +
PDF (1763KB)

Abstract

Asymmetry between outer and inner leaflets of cell membrane, such as variations in phospholipid composition, cholesterol (CHOL) distribution, stress levels, and ion environments, could significantly influence the biophysical properties of membranes, including the lateral organization of lipids and the formation of membrane nanodomains. To elucidate the effects of lipid component, lipid number mismatch, CHOL concentration asymmetry, and ionic conditions on membrane properties, we constructed several sets of all-atom, multi-component lipid bilayer models. Using molecular dynamics (MD) simulations, we investigated how membrane asymmetry modulates its biological characteristics. Our results indicate that CHOL concentration, whether symmetric or asymmetric between the leaflets, is the primary factor affecting membrane thickness, order parameters of the lipid tail, tilting angles of lipid molecules, water permeability, lateral pressure profiles, and transmembrane potential. Both low and high CHOL concentrations significantly alter lipid bilayer properties. Inducing cross-leaflet stress by mismatching lipid numbers can modify lipid order parameters and the tilting angles but has only mild effect on lateral pressure profiles and membrane thickness. Additionally, we found that transmembrane potential, generated by ions concentration differences across the membrane, can influence water permeability. Our findings expand the current understanding of lipid membrane properties and underscore the importance of considering CHOL and phospholipid asymmetry in membrane biophysics. The membrane models developed in our study also provide more physiological conditions for studying membrane proteins using MD simulations.

Keywords

cholesterol distribution / membrane asymmetry / membrane electrostatic potential / membrane pressure / molecular dynamics simulation

Cite this article

Download citation ▾
Yong Zhang, Jizhong Lou. Impact of lipid asymmetry on membrane biophysical properties: Insights from molecular dynamics simulations. Quant. Biol., 2025, 13(2): e89 DOI:10.1002/qub2.89

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Levental I , Lyman E . Regulation of membrane protein structure and function by their lipid nano-environment. Nat Rev Mol Cell Biol. 2023; 24 (2): 107- 22.

[2]

Kamp lAFOd . Lipid asymmetry in membranes. Annu Rev Biochem. 1979; 48: 47- 71.

[3]

Schroeder F , Nemecz G , Wood WG , Joiner C , Morrot G , Ayraut-Jarrier M , et al. Transmembrane distribution of sterol in the human erythrocyte. Biochim Biophys Acta, Biomembr. 1991; 1066: 183- 92.

[4]

Edidin M . The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct. 2003; 32 (1): 257- 83.

[5]

Zachowski A . Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J. 1993; 294: 1- 14.

[6]

Virtanen JA , Cheng KH , Somerharju P . Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model. Proc Natl Acad Sci USA. 1998; 95 (9): 4964- 9.

[7]

Vance DE , Vance JE . Biochemistry of lipids, lipoproteins and membranes. 5th ed. Amsterdam: Elsevier; 2008.

[8]

Seddon JM , Templer RH . Polymorphism of lipid-water systems. In: LIPOWSKY R, SCAKMANN E, editors. Structure and dynamics of membranes: from cells to vesicles. Amsterdan: Elsevier; 1995. p. 97- 160.

[9]

Liu S , Sheng R , Jung JH , Wang L , Stec E , Oconnor MJ , et al. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat Chem Biol. 2017; 13 (3): 268- 74.

[10]

Pabst G , Keller S . Exploring membrane asymmetry and its effects on membrane proteins. Trends Biochem Sci. 2024; 49 (4): 333- 45.

[11]

Doktorova M , Symons JL , Zhang X , Wang HY , Schlegel J , Lorent JH , et al. Cell membranes sustain phospholipid imbalance via cholesterol asymmetry. 2023. Preprint in bioRxiv: 2023.07.03.551157.

[12]

Eldho NV , Feller SE , Tristram-Nagle S , Polozov IV , Gawrisch K . Polyunsaturated docosahexaenoic vs docosapentaenoic acid differences in lipid matrix properties from the loss of one double bond. J Am Chem Soc. 2003; 125 (21): 6409- 21.

[13]

Nagle JF , Tristram-Nagle S . Structure of lipid bilayers. Biochim Biophys Acta-Reviews on Biomembranes. 2000; 1469 (3): 159- 95.

[14]

Kucerka N , Nagle JF , Sachs JN , Feller SE , Pencer J , Jackson A , et al. Lipid bilayer structure determined by the simultaneous analysis of neutron and x-ray scattering data. Biophys J. 2008; 95 (5): 2356- 67.

[15]

Park S , Beaven AH , Klauda JB , Im W . How tolerant are membrane simulations with mismatch in area per lipid between leaflets? J Chem Theor Comput. 2015; 11 (7): 3466- 77.

[16]

Park S , Im W , Pastor RW . Developing initial conditions for simulations of asymmetric membranes: a practical recommendation. Biophys J. 2021; 120 (22): 5041- 59.

[17]

Pandit SA , Chiu SW , Jakobsson E , Grama A , Scott HL . Cholesterol packing around lipids with saturated and unsaturated chains: a simulation study. Langmuir. 2008; 24 (13): 6858- 65.

[18]

Falck E , Patra M , Karttunen M , Hyvönen MT , Vattulainen I . Impact of cholesterol on voids in phospholipid membranes. J Chem Phys. 2004; 121 (24): 12676- 89.

[19]

McMullen TP , McElhaney RN . Physical studies of cholesterol-phospholipid interactions. Curr Opin Colloid Interface Sci. 1996; 1: 83- 90.

[20]

Wennberg CL , Spoel Dvd , Hub JS . Large influence of cholesterol on solute partitioning into lipid membranes. J Am Chem Soc. 2012; 134 (11): 5351- 61.

[21]

Boughter CT , Monje-Galvan V , Im W , Klauda JB . Influence of cholesterol on phospholipid bilayer structure and dynamics. J Phys Chem B. 2016; 120 (45): 11761- 72.

[22]

Bloom M , Evans E , Mouritsen OG . Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991; 24 (3): 293- 397.

[23]

Maxfield FR , Meer Gv . Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol. 2010; 22: 422- 9.

[24]

Róg T , Pasenkiewicz-Gierula M , Vattulainen I , Karttunen M . Ordering effects of cholesterol and its analogues. Biochim Biophys Acta. 2009; 1788 (1): 97- 121.

[25]

Longo ML , Waring AJ , Gordon LM , Hammer DA . Area expansion and permeation of phospholipid membrane bilayers by influenza fusion peptides and melittin. Langmuir. 1998; 14 (9): 2385- 95.

[26]

Gurtovenko AA , Vattulainen I . Lipid transmembrane asymmetry and intrinsic membrane potential: two sides of the same coin. J Am Chem Soc. 2007; 129 (17): 5359.

[27]

Gurtovenko AA , Vattulainen I . Membrane potential and electrostatics of phospholipid bilayers with asymmetric transmembrane distribution of anionic lipids. J Phys Chem B. 2008; 112 (15): 4629- 34.

[28]

Cascales JJL , Otero TF , Smith BD , González C , Márquez M . Model of an asymmetric dppc/dpps membrane: effect of asymmetry on the lipid properties A molecular dynamics simulation study. J Phys Chem B. 2006; 110 (5): 2358- 63.

[29]

Bennun SV , Longo M , Faller R . Molecular-scale structure in fluid−gel patterned bilayers: stability of interfaces and transmembrane distribution. Langmuir. 2007; 23 (25): 12465- 8.

[30]

Esteban-Martín S , Risselada HJ , Salgado J , Marrink SJ . Stability of asymmetric lipid bilayers assessed by molecular dynamics simulations. J Am Chem Soc. 2009; 131 (42): 15194- 202.

[31]

Perlmutter JD , Sachs JN . Interleaflet interaction and asymmetry in phase separated lipid bilayers: molecular dynamics simulations. J Am Chem Soc. 2011; 133 (17): 6563- 77.

[32]

Vacha R , Berkowitz ML , Jungwirth P . Molecular model of a cell plasma membrane with an asymmetric multicomponent composition: water permeation and ion effects. Biophys J. 2009; 96 (11): 4493- 501.

[33]

Siewert JM , Corradi V , Souza PCT , Ingólfsson HI , Peter Tieleman D , Sansom MSP . Computational modeling of realistic cell membranes. Chem Rev. 2019; 119 (9): 6184- 226.

[34]

Pogozheva ID , Armstrong GA , Kong L , Hartnagel TJ , Carpino CA , Gee SE , et al. Comparative molecular dynamics simulation studies of realistic eukaryotic, prokaryotic, and archaeal membranes. J Chem Inf Model. 2022; 62 (4): 1036- 51.

[35]

Ingólfsson HI , Melo MN , Eerden lJv , Arnarez Cm , Lopez CA , Wassenaar TA , et al. Lipid organization of the plasma membrane. J Am Chem Soc. 2014; 136 (41): 14554- 9.

[36]

Jo S , Lim JB , Klauda JB , Im W . Charmm-gui membrane builder for mixed bilayers and its application to yeast membranes. Biophys J. 2009; 97 (1): 50- 8.

[37]

Alwarawrah M , Dai J , Huang J . A molecular view of the cholesterol condensing effect in dopc lipid bilayers. J Phys Chem B. 2010; 114 (22): 7516- 23.

[38]

Rinia HA , Snel MME , Eerden JPJMvd , Kruijff Bd . Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett. 2001; 501: 92- 6.

[39]

McIntosh TJ . X-ray diffraction to determine the thickness of raft and nonraft bilayers. Methods Mol Biol. 2007; 398: 221- 30.

[40]

Sankaram MB , Thompson TE . Modulation of phospholipid acyl chain order by cholesterol. A solid-state 2h nuclear magnetic resonance study. Biochemistry. 1990; 29 (47): 10676- 84.

[41]

Falck E , Patra M , Karttunen M , Hyvonen MT , Vattulainen I . Lessons of slicing membranes: interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys J. 2004; 87 (2): 1076- 91.

[42]

Meer Gv , Voelker DR , Feigenson GW . Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008; 9 (2): 112- 24.

[43]

Brown MF . Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids. 1994; 73 (1-2): 158- 80.

[44]

Cantor RS . Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem B. 1997; 101 (10): 1723- 5.

[45]

Marsh D . Lateral pressure in membranes. Biochim Biophys Acta. 1996; 1286 (3): 183- 223.

[46]

Ollila S , Hyvonen MT , Vattulainen I . Polyunsaturation in lipid membranes: dynamic properties and lateral pressure profiles. J Phys Chem B. 2007; 111 (12): 3139- 50.

[47]

Saito H , Iwayama M , Takagi H , Nishimura M , Miyakawa T , Kawaguchi K , et al. Molecular dynamics study of gramicidin a in lipid bilayer: structure and lateral pressure profile. Int J Quant Chem. 2012; 112 (24): 3834- 9.

[48]

Gullingsrud J , Schulten K . Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J. 2004; 86 (6): 3496- 509.

[49]

Patra M . Lateral pressure profiles in cholesterol-dppc bilayers. Eur Biophys J. 2005; 35 (1): 79- 88.

[50]

Sachs JN , Crozier PS , Woolf TB . Atomistic simulations of biologically realistic transmembrane potential gradients. J Chem Phys. 2004; 121 (22): 10847- 51.

[51]

Saiz L , Klein ML . Electrostatic interactions in a neutral model phospholipid bilayer by molecular dynamics simulations. J Chem Phys. 2002; 116 (7): 3052- 7.

[52]

Deamer DW , Bramhall J . Permeability of lipid bilayers to water and ionic solutes. Chem Phys Lipids. 1986; 40 (2-4): 167- 88.

[53]

Paula S , Volkov AG , Hoek ANV , Haines TH , Deamer DW . Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J. 1996; 70: 339- 48.

[54]

Marrink SJ , Berendsen HJC . Permeation process of small molecules across lipid membranes studied by molecular dynamics simulations. J Phys Chem. 1996; 100 (41): 16729- 38.

[55]

Mathai JC , Tristram-Nagle S , Nagle JF , Zeidel ML . Structural determinants of water permeability through the lipid membrane. J Gen Physiol. 2008; 131 (1): 69- 76.

[56]

Zocher F , Spoel Dvd , Pohl P , Hub JS . Local partition coefficients govern solute permeability of cholesterol-containing membranes. Biophys J. 2013; 105: 2760- 70.

[57]

Shukla S , Baumgart T . Enzymatic trans-bilayer lipid transport: mechanisms, efficiencies, slippage, and membrane curvature. Biochim Biophys Acta Biomembr. 2021; 1863 (3): 183534.

[58]

Kim C , Ye F , Ginsberg MH . Regulation of integrin activation. Annu Rev Cell Dev Biol. 2011; 27 (1): 321- 45.

[59]

Holt A , Killian JA . Orientation and dynamics of transmembrane peptides: the power of simple models. Eur Biophys J. 2010; 39 (4): 609- 21.

[60]

London E . Insights into lipid raft structure and formation from experiments in model membranes. Curr Opin Struct Biol. 2002; 12 (4): 480- 6.

[61]

Ahmed SN , Brown DA , London E . On the origin of sphingolipid/ cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry. 1997; 36: 10944- 53.

[62]

Marsh D . Liquid-ordered phases induced by cholesterol: a compendium of binary phase diagrams. Biochim Biophys Acta. 2010; 1798 (3): 688- 99.

RIGHTS & PERMISSIONS

The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (1763KB)

299

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/