Forging the iron-net: Towards a quantitative understanding of microbial communities via siderophore-mediated interactions

Shaohua Gu , Jiqi Shao , Ruolin He , Guanyue Xiong , Zeyang Qu , Yuanzhe Shao , Linlong Yu , Di Zhang , Fanhao Wang , Ruichen Xu , Peng Guo , Ningbo Xi , Yinxiang Li , Yanzhao Wu , Zhong Wei , Zhiyuan Li

Quant. Biol. ›› 2025, Vol. 13 ›› Issue (2) : e84

PDF (1141KB)
Quant. Biol. ›› 2025, Vol. 13 ›› Issue (2) : e84 DOI: 10.1002/qub2.84
PERSPECTIVE

Forging the iron-net: Towards a quantitative understanding of microbial communities via siderophore-mediated interactions

Author information +
History +
PDF (1141KB)

Abstract

Iron is a critical yet limited nutrient for microbial growth. To scavenge iron, most microbes produce siderophores—diverse small molecules with high iron affinities. Different siderophores are specifically recognized and uptaken by corresponding recognizers, enabling targeted interventions and intriguing cheater-producer dynamics. We propose constructing a comprehensive iron interaction network, or “iron-net”, across the microbial world. Such a network offers the potentialfor precise manipulation of the microbiota, with conceivable applications in medicine, agriculture, and industry as well as advancing microbialecologyandevolutiontheories.Previously,oursuccessfulconstruction of an iron-net in the Pseudomonas genus demonstrated the feasibility of coevolution-inspired digital siderophore-typing. Enhanced by machine learning techniques and expanding sequencing data, forging such an iron-net calls for multidisciplinary collaborations and holds significant promise in addressing critical challenges in microbial communities.

Keywords

ecology / evolution / iron-net / microbial community / siderophores

Cite this article

Download citation ▾
Shaohua Gu, Jiqi Shao, Ruolin He, Guanyue Xiong, Zeyang Qu, Yuanzhe Shao, Linlong Yu, Di Zhang, Fanhao Wang, Ruichen Xu, Peng Guo, Ningbo Xi, Yinxiang Li, Yanzhao Wu, Zhong Wei, Zhiyuan Li. Forging the iron-net: Towards a quantitative understanding of microbial communities via siderophore-mediated interactions. Quant. Biol., 2025, 13(2): e84 DOI:10.1002/qub2.84

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrews SC , Robinson AK , Rodríguez-Quiñones F . Bacterial iron homeostasis. FEMS (Fed Eur Microbiol Soc) Microbiol Rev. 2003; 27 (2-3): 215- 37.

[2]

Frey PA , Reed GH . The ubiquity of iron. ACS Publications; 2012.

[3]

Wade J , Byrne DJ , Ballentine CJ , Drakesmith H . Temporal variation of planetary iron as a driver of evolution. Proc Natl Acad Sci USA. 2021; 118 (51): e2109865118.

[4]

Ilbert M , Bonnefoy V . Insight into the evolution of the iron oxidation pathways. Biochim Biophys Acta Bioenerg. 2013; 1827 (2): 161- 75.

[5]

Boyd PW , Ellwood MJ . The biogeochemical cycle of iron in the ocean. Nat Geosci. 2010; 3 (10): 675- 82.

[6]

Boguta P , D'Orazio V , Senesi N , Sokołowska Z , Szewczuk-Karpisz K . Insight into the interaction mechanism of iron ions with soil humic acids The effect of the pH and chemical properties of humic acids. J Environ Manag. 2019; 245: 367- 74.

[7]

Seyoum Y , Baye K , Humblot C . Iron homeostasis in host and gut bacteria-a complex interrelationship. Gut Microb. 2021; 13 (1): 1874855.

[8]

Robin A , Vansuyt G , Hinsinger P , Meyer JM , Briat JF , Lemanceau P . Iron dynamics in the rhizosphere: consequences for plant health and nutrition, Chapter 4. Adv Agron. 2008; 99: 183- 225.

[9]

Spiga L , Fansler RT , Perera YR , Shealy NG , Munneke MJ , David HE , et al. Iron acquisition by a commensal bacterium modifies host nutritional immunity during Salmonella infection. Cell Host Microbe. 2023; 31 (10): 1639- 54. e1610.

[10]

Ellermann M , Arthur JC . Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic Biol Med. 2017; 105: 68- 78.

[11]

Kramer J , Özkaya Ö , Kümmerli R . Bacterial siderophores in community and host interactions. Nat Rev Microbiol. 2020; 18 (3): 152- 63.

[12]

Schalk IJ . Bacterial siderophores: diversity, uptake pathways and applications. Nat Rev Microbiol. 2024; 1- 17.

[13]

Krewulak KD , Vogel HJ . Structural biology of bacterial iron uptake. Biochim Biophys Acta Biomembr. 2008; 1778 (9): 1781- 804.

[14]

Hider RC , Kong X . Chemistry and biology of siderophores. Nat Prod Rep. 2010; 27 (5): 637- 57.

[15]

Siderophore information Database (SIDERTE). 2014.

[16]

He R , Gu S , Xu J , Li X , Chen H , Shao Z , et al. SIDERITE: unveiling hidden siderophore diversity in the chemical space through digital exploration. iMeta. 2024; 3 (2): e192.

[17]

Gu S , Shao Y , Rehm K , Bigler L , Zhang D , He R , et al. From sequence to molecules: feature sequence-based genome mining uncovers the hidden diversity of bacterial siderophore pathways. eLife. 2024; 13: RP96719.

[18]

He R , Zhang J , Shao Y , Gu S , Song C , Qian L , et al. Knowledge-guided data mining on the standardized architecture of NRPS: subtypes, novel motifs, and sequence entanglements. PLoS Comput Biol. 2023; 19 (5): e1011100.

[19]

Timofeeva AM , Galyamova MR , Sedykh SE . Bacterial siderophores: classification, biosynthesis, perspectives of use in agriculture. Plants. 2022; 11 (22): 3065.

[20]

Schalk IJ , Mislin GL , Brillet K . Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters. Curr Top Membr. 2012; 69: 37- 66.

[21]

Clarke TE , Ku S.-Y , Dougan DR , Vogel HJ , Tari LW , The structure of the ferric siderophore binding protein FhuD complexed with gallichrome. Nat Struct Biol. 2000; 7 (4): 287- 91.

[22]

Fukushima T , Allred BE , Sia AK , Nichiporuk R , Andersen UN , Raymond KN . Gram-positive siderophore-shuttle with iron-exchange from Fe-siderophore to apo-siderophore by Bacillus cereus YxeB. Proc Natl Acad Sci USA. 2013; 110 (34): 13821- 6.

[23]

Grigg JC , Cheung J , Heinrichs DE , Murphy ME . Specificity of staphyloferrin B recognition by the SirA receptor from Staphylococcus aureus. J Biol Chem. 2010; 285 (45): 34579- 88.

[24]

Meyer JM , Stintzi A , De Vos D , Cornelis P , Tappe R , Taraz K , et al. Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology. 1997; 143 (1): 35- 43.

[25]

De Chial M , Ghysels B , Beatson SA , Geoffroy V , Meyer JM , Pattery T , et al. Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa. Microbiology. 2003; 149 (4): 821- 31.

[26]

Greenwald J , Nader M , Celia H , Gruffaz C , Geoffroy V , Meyer JM , et al. FpvA bound to non-cognate pyoverdines: molecular basis of siderophore recognition by an iron transporter. Mol Microbiol. 2009; 72 (5): 1246- 59.

[27]

Bouvier B , Cézard C , Sonnet P . Selectivity of pyoverdine recognition by the FpvA receptor of Pseudomonas aeruginosa from molecular dynamics simulations. Phys Chem Chem Phys. 2015; 17 (27): 18022- 34.

[28]

Byun H , Jung IJ , Chen J , Larios Valencia J , Zhu J . Siderophore piracy enhances Vibrio cholerae environmental survival and pathogenesis. Microbiology. 2020; 166 (11): 1038- 46.

[29]

Butaitė E , Baumgartner M , Wyder S , Kümmerli R . Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat Commun. 2017; 8 (1): 414.

[30]

Rutz J , Abdullah T , Singh S , Kalve V , Klebba P . Evolution of the ferric enterobactin receptor in gram-negative bacteria. J Bacteriol. 1991; 173 (19): 5964- 74.

[31]

D'Onofrio A , Crawford JM , Stewart EJ , Witt K , Gavrish E , Epstein S , et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol. 2010; 17 (3): 254- 64.

[32]

Carrano CJ , Jordan M , Drechsel H , Schmid DG , Winkelmann G . Heterobactins: a new class of siderophores from Rhodococcus erythropolis IGTS8 containing both hydroxamate and catecholate donor groups. Biometals. 2001; 14 (2): 119- 25.

[33]

Raymond KN , Allred BE , Sia AK . Coordination chemistry of microbial iron transport. Accounts Chem Res. 2015; 48 (9): 2496- 505.

[34]

Grandchamp GM , Caro L , Shank EA . Pirated siderophores promote sporulation in Bacillus subtilis. Appl Environ Microbiol. 2017; 83 (10).

[35]

Dertz EA , Xu JD , Stintzi A , Raymond KN . Bacillibactin-mediated iron transport in Bacillus subtilis. J Am Chem Soc. 2006; 128 (1): 22- 3.

[36]

Zawadzka AM , Abergel RJ , Nichiporuk R , Andersen UN , Raymond KN . Siderophore-mediated iron acquisition systems in Bacillus cereus: identification of receptors for anthrax virulence-associated petrobactin. Biochemistry. 2009; 48 (16): 3645- 57.

[37]

Lyng M , Jørgensen JP , Schostag MD , Jarmusch SA , Aguilar DK , Lozano-Andrade CN , et al. Competition for iron shapes metabolic antagonism between Bacillus subtilis and Pseudomonas marginalis. ISME J. 2024; 18 (1): wrad001.

[38]

Moynié L , Milenkovic S , Mislin GLA , Gasser V , Malloci G , Baco E , et al. The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model. Nat Commun. 2019; 10 (1): 3673.

[39]

Ankenbauer RG , Quan HN . FptA, the Fe (III)-pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors. J Bacteriol. 1994; 176 (2): 307- 19.

[40]

Chan DC , Burrows LL . Pseudomonas aeruginosa FpvB is a high-affinity transporter for xenosiderophores ferrichrome and ferrioxamine B. mBio. 2023; 14 (1): e03122- 49.

[41]

Dimopoulou A , Theologidis I , Benaki D , Koukounia M , Zervakou A , Tzima A , et al. Direct antibiotic activity of bacillibactin broadens the biocontrol range of Bacillus amyloliquefaciens MBI600. mSphere. 2021; 6 (4).

[42]

Bodilis J , Ghysels B , Osayande J , Matthijs S , Pirnay JP , Denayer S , et al. Distribution and evolution of ferripyoverdine receptors in Pseudomonas aeruginosa. Environ Microbiol. 2009; 11 (8): 2123- 35.

[43]

Visca P , Imperi F , Lamont IL . Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol. 2007; 15 (1): 22- 30.

[44]

Crits-Christoph A , Bhattacharya N , Olm MR , Song YS , Banfield JF . Transporter genes in biosynthetic gene clusters predict metabolite characteristics and siderophore activity. Genome Res. 2021; 31 (2): 239- 50.

[45]

Barelmann I , Taraz K , Budzikiewicz H , Geoffroy V , Meyer JM . The structures of the pyoverdins from two Pseudomonas fluorescens strains accepted mutually by their respective producers. Z Naturforsch C Biosci. 2002; 57 (1-2): 9- 16.

[46]

Costea PI , Hildebrand F , Arumugam M , Bäckhed F , Blaser MJ , Bushman FD , et al. Enterotypes in the landscape of gut microbial community composition. Nature Microbiology. 2018; 3 (1): 8- 16.

[47]

Griffin AS , West SA , Buckling A . Cooperation and competition in pathogenic bacteria. Nature. 2004; 430 (7003): 1024- 7.

[48]

Kloepper J , Leong J , Teintze M , Schroth M . Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature. 1980; 286 (5776): 885- 6.

[49]

Wu Z , Shao J , Zheng J , Liu B , Li Z , Shen N . A zero-sum game or an interactive frame?Iron competition between bacteria and humans in infection war. Chinese Med J. 2022; 135 (16): 1917- 26.

[50]

Meyer JM , Geoffroy VA , Baida N , Gardan L , Izard D , Lemanceau P , et al. Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Environ Microbiol. 2002; 68 (6): 2745- 53.

[51]

Becker F , Wienand K , Lechner M , Frey E , Jung H . Interactions mediated by a public good transiently increase cooperativity in growing Pseudomonas putida metapopulations. Sci Rep. 2018; 8 (1): 4093.

[52]

Cremer J , Melbinger A , Wienand K , Henriquez T , Jung H , Frey E . Cooperation in microbial populations: theory and experimental model systems. J Mol Biol. 2019; 431 (23): 4599- 644.

[53]

Li C , Pan D , Li M , Wang Y , Song L , Yu D , et al. Aerobactin-mediated iron acquisition enhances biofilm formation, oxidative stress resistance, and virulence of Yersinia pseudotu-berculosis. Front Microbiol. 2021; 12: 699913.

[54]

Carroll CS , Moore MM . Ironing out siderophore biosynthesis: a review of non-ribosomal peptide synthetase (NRPS)-independent siderophore synthetases. Crit Rev Biochem Mol Biol. 2018; 53 (4): 356- 81.

[55]

Patel P , Song L , Challis GL . Distinct extracytoplasmic siderophore binding proteins recognize ferrioxamines and ferricoelichelin in Streptomyces coelicolor A3(2). Biochemistry. 2010; 49 (37): 8033- 42.

[56]

Coderre PE , Earhart CF . The entD gene of the Escherichia coli K12 enterobactin gene cluster. Microbiology. 1989; 135 (11): 3043- 55.

[57]

Gu S , Shao Z , Qu Z , Zhu S , Shao Y , Zhang D , et al. Siderophore-receptor coevolution analysis reveals habitat-and pathogen-specific bacterial iron interaction networks. 2023. Preprint at bioRxiv: 2023. 2011. 2005.565711.

[58]

Hotta K , Kim C.-Y , Fox DT , Koppisch AT . Siderophore-mediated iron acquisition in Bacillus anthracis and related strains. Microbiology. 2010; 156 (7): 1918- 25.

[59]

Abramson J , Adler J , Dunger J , Evans R , Green T , Pritzel A , et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024; 630 (8016): 1- 3.

[60]

Zhu J , Gu Z , Pei J , Lai L . DiffBindFR: an SE (3) equivariant network for flexible protein-ligand docking. Chem Sci. 2024; 15 (21): 7926- 42.

[61]

Mongia M , Baral R , Adduri A , Yan D , Liu Y , Bian Y , et al. AdenPredictor: accurate prediction of the adenylation domain specificity of nonribosomal peptide biosynthetic gene clusters in microbial genomes. Bioinformatics. 2023; 39 (Suppl ment_1): i40- 6.

[62]

Tang J , Ju Y , Zhou J , Guo J , Gu Q , Xu J , et al. Structural and biochemical characterization of SbnC as a representative type B siderophore synthetase. ACS Chem Biol. 2020; 15 (10): 2731- 40.

[63]

Kadi N , Challis GL . Siderophore biosynthesis: a substrate specificity assay for nonribosomal peptide synthetase-independent siderophore synthetases involving trapping of acyl-adenylate intermediates with hydroxylamine. Methods Enzymol. 2009; 458: 431- 57.

[64]

Piggot TJ , Holdbrook DA , Khalid S . Conformational dynamics and membrane interactions of the E coli outer membrane protein FecA: a molecular dynamics simulation study. Biochim Biophys Acta, Biomembr. 2013; 1828 (2): 284- 93.

[65]

Li M , Chen B , Xu M , Li F , Geng Y , Chen D , et al. Identification of TonB-dependent siderophore receptor inhibitors against Flavobacterium columnare using a structure-based high-throughput virtual screening method. Front Microbiol. 2024; 15: 1392178.

[66]

Faraldo-Gómez JD , Smith GR , Sansom MS . Molecular dynamics simulations of the bacterial outer membrane protein FhuA: a comparative study of the ferrichrome-free and bound states. Biophys J. 2003; 85 (3): 1406- 20.

[67]

Wensel CR , Pluznick JL , Salzberg SL , Sears CL . Next-generation sequencing: insights to advance clinical investigations of the microbiome. J Clin Invest. 2022; 132 (7): 132.

[68]

Shao J , Rong N , Wu Z , Gu S , Liu B , Shen N , et al. Siderophore-mediated iron partition promotes dynamical coexistence between cooperators and cheaters. iScience. 2023: 26.

[69]

Hibbing ME , Fuqua C , Parsek MR , Peterson SB . Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010; 8 (1): 15- 25.

[70]

Niehus R , Picot A , Oliveira NM , Mitri S , Foster KR . The evolution of siderophore production as a competitive trait. Evolution. 2017; 71 (6): 1443- 55.

[71]

Inglis RF , Biernaskie JM , Gardner A , Kümmerli R . Presence of a loner strain maintains cooperation and diversity in well-mixed bacterial communities. Proceedings of the Royal Society B. 2016; 283 (1822): 20152682.

[72]

Smith P , Schuster M . Public goods and cheating in microbes. Curr Biol. 2019; 29 (11): R442- 7.

[73]

Sexton DJ , Schuster M . Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat Commun. 2017; 8 (1): 230.

[74]

Jin Z , Li J , Ni L , Zhang R , Xia A , Jin F . Conditional privatization of a public siderophore enables Pseudomonas aeruginosa to resist cheater invasion. Nat Commun. 2018; 9 (1): 1383.

[75]

Özkaya Ö , Balbontín R , Gordo I , Xavier KB . Cheating on cheaters stabilizes cooperation in Pseudomonas aeruginosa. Curr Biol. 2018; 28 (13): 2070- 80. e2076.

[76]

Shao J , Li Y , Lu J , Gu S , Li Z . Siderophore piracy promotes dynamical coexistence in microbial community. 2012. Preprint at bioRxiv: 2023. 2011. 2021.568182.

[77]

Gu S , Yang T , Shao Z , Wang T , Cao K , Jousset A , et al. Siderophore-mediated interactions determine the disease suppressiveness of microbial consortia. mSystems. 2020; 5 (3).

[78]

Li Z , Liu B , Li SH.-J , King CG , Gitai Z , Wingreen NS . Modeling microbial metabolic trade-offs in a chemostat. PLoS Comput Biol. 2020; 16 (8): e1008156.

[79]

Kerr B , Riley MA , Feldman MW , Bohannan BJ . Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature. 2002; 418 (6894): 171- 4.

[80]

Liao MJ , Din MO , Tsimring L , Hasty J . Rock-paper-scissors engineered population dynamics increase genetic stability. Science. 2019; 365 (6457): 1045- 9.

[81]

Kirkup BC , Riley MA . Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature. 2004; 428 (6981): 412- 4.

[82]

Bushley KE , Ripoll DR , Turgeon BG . Module evolution and substrate specificity of fungal nonribosomal peptide synthetases involved in siderophore biosynthesis. BMC Evol Biol. 2008; 8: 1- 24.

[83]

Baunach M , Chowdhury S , Stallforth P , Dittmann E . The landscape of recombination events that create nonribosomal peptide diversity. Mol Biol Evol. 2021; 38 (5): 2116- 30.

[84]

Fan J , Ren J , He R , Wei PL , Li Y , Li W , et al. Biosynthetic diversification of peptaibol mediates fungus-mycohost interactions. 2022. Preprint at bioRxiv: 2022. 2006. 2005.494846.

[85]

Fischbach MA , Walsh CT . Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev. 2006; 106 (8): 3468- 96.

[86]

Bruns H , Crüsemann M , Letzel AC , Alanjary M , McInerney JO , Jensen PR , et al. Function-related replacement of bacterial siderophore pathways. ISME J. 2018; 12 (2): 320- 9.

[87]

Soutar CD , Stavrinides J . The evolution of three siderophore biosynthetic clusters in environmental and host-associating strains of Pantoea. Mol Genet Genom. 2018; 293 (6): 1453- 67.

[88]

Cimermancic P , Medema MH , Claesen J , Kurita K , Brown LCW , Mavrommatis K , et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell. 2014; 158 (2): 412- 21.

[89]

Wang X , Zhou H , Ren X , Chen H , Zhong L , Bai X , et al. Recombineering enables genome mining of novel siderophores in a non-model Burkholderiales strain. Engineering Microbiology. 2023; 3: 100106.

[90]

Brown AS , Calcott MJ , Owen JG , Ackerley DF . Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Nat Prod Rep. 2018; 35 (11): 1210- 28.

[91]

Li Z , Ióca LP , He R , Donia MS . Natural diversifying evolution of nonribosomal peptide synthetases in a defensive symbiont reveals nonmodular functional constraints. PNAS Nexus. 2024; 3 (9): pgae384.

[92]

Bozhüyük KA , Präve L , Kegler C , Schenk L , Kaiser S , Schelhas C , et al. Evolution-inspired engineering of nonribosomal peptide synthetases. Science. 2024; 383 (6689): eadg4320.

[93]

Barona-Gómez F , Chevrette MG , Hoskisson PA . On the evolution of natural product biosynthesis. Adv Microb Physiol. 2023; 83: 309- 49.

[94]

Martiny AC , Treseder K , Pusch G . Phylogenetic conservatism of functional traits in microorganisms. ISME J. 2013; 7 (4): 830- 8.

[95]

Smith EE , Sims EH , Spencer DH , Kaul R , Olson MV . Evidence for diversifying selection at the pyoverdine locus of Pseudomonas aeruginosa. J Bacteriol. 2005; 187 (6): 2138- 47.

[96]

Lee W , van Baalen M , Jansen VA . An evolutionary mechanism for diversity in siderophore-producing bacteria. Ecol Lett. 2012; 15 (2): 119- 25.

[97]

Rü tschlin S , Gunesch S , Bö ttcher T . One enzyme to build them all: ring-size engineered siderophores inhibit the swarming motility of Vibrio. ACS Chem Biol. 2018; 13 (5): 1153- 8.

[98]

Thulasiraman P , Newton SM , Xu J , Raymond KN , Mai C , Hall A , et al. Selectivity of ferric enterobactin binding and cooperativity of transport in gram-negative bacteria. J Bacteriol. 1998; 180 (24): 6689- 96.

[99]

Winkelmann G , Braun V . Stereoselective recognition of ferrichrome by fungi and bacteria. FEMS (Fed Eur Microbiol Soc) Microbiol Lett. 1981; 11 (4): 237- 41.

[100]

Denayer S , Matthijs S , Cornelis P . Pyocin S2(Sa) kills Pseudomonas aeruginosa strains via the FpvA type I ferripyoverdine receptor. J Bacteriol. 2007; 189 (21): 7663- 8.

[101]

Bonnain C , Breitbart M , Buck KN . The Ferrojan horse hypothesis: iron-virus interactions in the ocean. Front Mar Sci. 2016; 3: 82.

[102]

Rabsch W , Ma L , Wiley G , Najar FZ , Kaserer W , Schuerch DW , et al. FepA-and TonB-dependent bacteriophage H8: receptor binding and genomic sequence. J Bacteriol. 2007; 189 (15): 5658- 74.

[103]

Vasse M , Torres-Barceló C , Hochberg ME . Phage selection for bacterial cheats leads to population decline. Proceedings of the Royal Society B. 2015; 282 (1818): 20152207.

[104]

Ge H , Hu M , Zhao G , Du Y , Xu N , Chen X , et al. The "fighting wisdom and bravery" of tailed phage and host in the process of adsorption. Microbiol Res. 2020; 230: 126344.

[105]

Murdoch CC , Skaar EP . Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol. 2022; 20 (11): 657- 70.

[106]

Sargun A , Gerner RR , Raffatellu M , Nolan EM . Harnessing iron acquisition machinery to target Enterobacteriaceae. JID (J Infect Dis). 2021; 223 (Suppl ment_3): S307- 13.

[107]

Fischbach MA , Walsh CT , Clardy J . The evolution of gene collectives: how natural selection drives chemical innovation. Proc Natl Acad Sci USA. 2008; 105 (12): 4601- 8.

[108]

Kauffman SA . Reinventing the sacred: a new view of science, reason, and religion. Basic Books. 2008.

[109]

Mizuno K , Mizuno M , Yamauchi M , Takemura AJ , Medrano Romero V , Morikawa K . Adjacent-possible ecological niche: growth of Lactobacillus species co-cultured with Escherichia coli in a synthetic minimal medium. Sci Rep. 2017; 7 (1): 12880.

[110]

Testa B , Vistoli G , Pedretti A . Small molecules as exemplars of emergent properties and diversification into the'adjacent possible'. Chem Biodivers. 2014; 11 (9): 1309- 29.

[111]

Pearl Mizrahi S , Goyal A , Gore J . Community interactions drive the evolution of antibiotic tolerance in bacteria. Proc Natl Acad Sci USA. 2023; 120 (3): e2209043119.

[112]

Lee H , Bloxham B , Gore J . Resource competition can explain simplicity in microbial community assembly. Proc Natl Acad Sci USA. 2023; 120 (35): e2212113120.

[113]

Pilosof S , Alcala-Corona SA , Wang T , Kim T , Maslov S , Whitaker R , et al. The network structure and eco-evolutionary dynamics of CRISPR-induced immune diversification. Nature Ecology and Evolution. 2020; 4 (12): 1650- 60.

[114]

Puig S , Ramos-Alonso L , Romero AM , Martínez-Pastor MT . The elemental role of iron in DNA synthesis and repair. Metallomics. 2017; 9 (11): 1483- 500.

[115]

Pau MY , Lipscomb JD , Solomon EI . Substrate activation for O2 reactions by oxidized metal centers in biology. Proc Natl Acad Sci USA. 2007; 104 (47): 18355- 62.

[116]

Gu S , Wei Z , Shao Z , Friman V.-P , Cao K , Yang T , et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nature Microbiology. 2020; 5 (8): 1002- 10.

[117]

Sargun A , Gerner RR , Raffatellu M , Nolan EM . Harnessing iron acquisition machinery to target Enterobacteriaceae. J Infect Dis. 2021; 223 (Suppl ment_3): S307- 13.

[118]

Harrison F , Buckling A . Siderophore production and biofilm formation as linked social traits. ISME J. 2009; 3 (5): 632- 4.

[119]

Mridha S , Kümmerli R . Coordination of siderophore gene expression among clonal cells of the bacterium Pseudomonas aeruginosa. Commun Biol. 2022; 5 (1): 545.

[120]

Hesse E , Luján AM , O'Brien S , Newbury A , McAvoy T , Soria Pascual J , et al. Parallel ecological and evolutionary responses to selection in a natural bacterial community. Proc Natl Acad Sci USA. 2024; 121 (36): e2403577121.

RIGHTS & PERMISSIONS

The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (1141KB)

373

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/