Quantifying cell fate change under different stochastic gene activation frameworks

Xinxin Chen , Ying Sheng , Liang Chen , Moxun Tang , Feng Jiao

Quant. Biol. ›› 2025, Vol. 13 ›› Issue (1) : e82

PDF (2035KB)
Quant. Biol. ›› 2025, Vol. 13 ›› Issue (1) : e82 DOI: 10.1002/qub2.82
RESEARCH ARTICLE

Quantifying cell fate change under different stochastic gene activation frameworks

Author information +
History +
PDF (2035KB)

Abstract

Gene transcription is a stochastic process characterized by fluctuations in mRNA levels of the same gene in isogenic cell populations. A central question in single-cell studies is how to map transcriptional variability to phenotypic differences between isogenic cells. We introduced a measurable and statistical transcription threshold I for critical genes that determine the entry level of Waddington’s canal toward a specific cell fate. Subsequently, JI, which is the probability that a cell has at least I mRNA molecules of a given gene, approximates the likelihood of a cell committing to the corresponding fate. In this study, we extended the previous results of JI of the classical telegraph model by considering more complex models with different gene activation frameworks. We showed that (a) the upregulation of the critical gene may significantly suppress cell fate change and (b) increasing transcription noise performs a bidirectional role that can either enhance or suppress the cell fate change. These observations matched accurately with the data from bacterial, yeast, and mammalian cells. We estimated the threshold I from these data and predicted that (a) the traditional human immunodeficiency virus (HIV) activators that modulate gene activation frequency at high doses may largely suppress HIV reactivation and (b) the cells may favor noisier (or less noisy) regulation of stress genes under high (or low) environmental pressures to maintain cell viability.

Keywords

cell fate change / mRNA distribution / statistical transcription threshold / stochastic gene transcription / transcription noise

Cite this article

Download citation ▾
Xinxin Chen, Ying Sheng, Liang Chen, Moxun Tang, Feng Jiao. Quantifying cell fate change under different stochastic gene activation frameworks. Quant. Biol., 2025, 13(1): e82 DOI:10.1002/qub2.82

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Larson DR . What do expression dynamics tell us about the mechanism of transcription. Curr Opin Genet Dev. 2011; 21 (5): 591- 9.

[2]

Munsky B , Neuert G , Van Oudenaarden A . Using gene expression noise to understand gene regulation. Science. 2012; 336 (6078): 183- 7.

[3]

Sanchez A , Golding I . Genetic determinants and cellular constraints in noisy gene expression. Science. 2013; 342 (6163): 1188- 93.

[4]

Larsson AJM , Johnsson P , Hagemann-Jensen M , Hartmanis L , Faridani OR , Reinius B , et al. Genomic encoding of transcriptional burst kinetics. Nature. 2019; 565 (7738): 251- 4.

[5]

Munsky B , Fox Z , Neuert G . Integrating single-molecule experiments and discrete stochastic models to understand heterogeneous gene transcription dynamics. Methods. 2015; 85: 12- 21.

[6]

Wang J , Zhang S , Lu H , Xu H . Differential regulation of alternative promoters emerges from unified kinetics of enhancer-promoter interaction. Nat Commun. 2022; 13 (1): 2714.

[7]

Chen L , Zhu C , Jiao F . A generalized moment-based method for estimating parameters of stochastic gene transcription. Math Biosci. 2022; 345: 108780.

[8]

Ackermann M . A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015; 13 (8): 497- 508.

[9]

Kaern M , Elston TC , Blake WJ , Collins JJ . Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet. 2005; 6 (6): 451- 64.

[10]

Mohammed H , Hernando-Herraez I , Savino A , Scialdone A , Macaulay I , Mulas C , et al. Single-cell landscape of transcriptional heterogeneity and cell fate decisions during mouse early gastrulation. Cell Rep. 2017; 20 (5): 1215- 28.

[11]

Guo X , Tang T , Duan M , Zhang L , Ge H . The nonequilibrium mechanism of noise-enhanced drug synergy in HIV latency reactivation. iScience. 2022; 25 (6): 104358.

[12]

Lord ND , Norman TM , Yuan R , Bakshi S , Losick R , Paulsson J . Stochastic antagonism between two proteins governs a bacterial cell fate switch. Science. 2019; 366 (6461): 116- 20.

[13]

Qiu B , Zhou T , Zhang J . Stochastic fluctuations in apoptotic threshold of tumour cells can enhance apoptosis and combat fractional killing. R Soc Open Sci. 2020; 7 (2): 190462.

[14]

Lee TI , Young RA . Transcriptional regulation and its misregulation in disease. Cell. 2013; 152 (6): 1237- 51.

[15]

Moris N , Pina C , Arias AM . Transition states and cell fate decisions in epigenetic landscapes. Nat Rev Genet. 2016; 17 (11): 693- 703.

[16]

Calo E , Quintero-Estades JA , Danielian PS , Nedelcu S , Berman SD , Lees JA . Rb regulates fate choice and lineage commitment in vivo. Nature. 2010; 466 (7310): 1110- 4.

[17]

Kaufman CK , Mosimann C , Fan ZP , Yang S , Thomas AJ , Ablain J , et al. A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science. 2016; 351 (6272): aad2197.

[18]

Jiao F , Sun Q , Tang M , Yu J , Zheng B . Distribution modes and their corresponding parameter regions in stochastic gene transcription. SIAM J Appl Math. 2015; 75 (6): 2396- 420.

[19]

Kalmar T , Lim C , Hayward P , Muñoz-Descalzo S , Nichols J , Garcia-Ojalvo J , et al. Regulated fluctuations in nanog expression mediate cell fate decisions in embryonic stem cells. PLoS Biol. 2009; 7 (7): e1000149.

[20]

Dar RD , Hosmane NN , Arkin MR , Siliciano RF , Weinberger LS . Screening for noise in gene expression identifies drug synergies. Science. 2014; 344 (6190): 1392- 6.

[21]

Flavahan WA , Gaskell E , Bernstein BE . Epigenetic plasticity and the hallmarks of cancer. Science. 2017; 357 (6348): eaal2380.

[22]

Wang J , Xu L , Wang E , Huang S . The potential landscape of genetic circuits imposes the arrow of time in stem cell differentiation. Biophys J. 2010; 99 (1): 29- 39.

[23]

McDonald ACH , Biechele S , Rossant J , Stanford WL . Sox17-mediated XEN cell conversion identifies dynamic networks controlling cell-fate decisions in embryo-derived stem cells. Cell Rep. 2014; 9 (2): 780- 93.

[24]

Paek AL , Liu JC , Loewer A , Forrester WC , Lahav G . Cell-to-cell variation in p53 dynamics leads to fractional killing. Cell. 2016; 165 (3): 631- 42.

[25]

Purvis JE , Karhohs KW , Mock C , Batchelor E , Loewer A , Lahav G . p53 dynamics control cell fate. Science. 2012; 336 (6087): 1440- 4.

[26]

Zechner C , Nerli E , Norden C . Stochasticity and determinism in cell fate decisions. Development. 2020; 147 (14): dev181495.

[27]

Jiao F , Tang M . Quantification of transcription noise’s impact on cell fate commitment with digital resolutions. Bioinformatics. 2022; 38 (11): 3062- 9.

[28]

Raj A , Peskin CS , Tranchina D , Vargas DY , Tyagi S . Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 2006; 4 (10): e309.

[29]

Nadal E , Ammerer G , Posas F . Controlling gene expression in response to stress. Nat Rev Genet. 2011; 12 (12): 833- 45.

[30]

Cao Z , Grima R . Analytical distributions for detailed models of stochastic gene expression in eukaryotic cells. Proc Natl Acad Sci USA. 2020; 117 (9): 4682- 92.

[31]

Chen L , Lin G , Jiao F . Using average transcription level to understand the regulation of stochastic gene activation. R Soc Open Sci. 2022; 9 (2): 211757.

[32]

Jia C , Li Y . Analytical time-dependent distributions for gene expression models with complex promoter switching mechanisms. SIAM J Appl Math. 2023; 83 (4): 1572- 602.

[33]

Zhou T , Zhang J . Analytical results for a multistate gene model. SIAM J Appl Math. 2012; 72 (3): 789- 818.

[34]

Durrett R . Probability: theory and examples. 4.1th ed. NY: Cambridge university press; 2013.

[35]

Jiao F , Tang M , Yu J . Distribution profiles and their dynamic transition in stochastic gene transcription. J Differ Equations. 2013; 2013254 (8): 3307- 28.

[36]

Jiao F , Zhu C . Regulation of gene activation by competitive cross talking pathways. Biophys J. 2020; 119 (6): 1204- 14.

[37]

Suter DM , Molina N , Gatfield D , Schneider K , Schibler U , Naef F . Mammalian genes are transcribed with widely different bursting kinetics. Science. 2011; 332 (6028): 472- 4.

[38]

Zimmer C , Häkkinen A , Ribeiro AS . Estimation of kinetic parameters of transcription from temporal single-RNA measurements. Math Biosci. 2016; 271: 146- 53.

[39]

Chen J , Jiao F . A novel approach for calculating exact forms of mRNA distribution in single-cell measurements. Mathematics. 2021; 10 (1): 27.

[40]

Jiao F , Li J , Liu T , Zhu Y , Che W , Bleris L , et al. What can we learn when fitting a complex gene expression model to a simple telegraph model? PLoS Comput Biol. 2024; 20 (5): e1012118.

[41]

Tang M . The mean and noise of stochastic gene transcription. J Theor Biol. 2008; 253 (2): 271- 80.

[42]

Jordan A , Defechereux P , Verdin E . The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J. 2001; 20: 1726- 38.

[43]

Nixon CC , Mavigner M , Sampey GC , Brooks AD , Spagnuolo RA , Irlbeck DM , et al. Systemic HIV and SIV latency reversal via non-canonical NF-κB signalling in vivo. Nature. 2020; 578 (7793): 160- 5.

[44]

Jiao F , Sun Q , Lin G , Yu J . Distribution profiles in gene transcription activated by the cross-talking pathway. Discrete Contin Dyn Syst B. 2019; 24 (6): 2799- 810.

[45]

Lin G , Yu J , Zhou Z , Sun Q , Jiao F . Fluctuations of mRNA distributions in multiple pathway activated transcription. Discrete Contin Dyn Syst B. 2019; 24 (4): 1543- 68.

[46]

Carey LB , van Dijk D , Sloot PM , Kaandorp JA , Segal E . Promoter sequence determines the relationship between expression level and noise. PLoS Biol. 2013; 11 (4): e1001528.

[47]

So L , Ghosh A , Zong C , Sepúlveda LA , Segev R , Golding I . General properties of transcriptional time series in Escherichia coli. Nat Genet. 2011; 43 (6): 554- 60.

[48]

Molina N , Suter DM , Cannavo R , Zoller B , Gotic I , Naef F . Stimulus-induced modulation of transcriptional bursting in a single mammalian gene. Proc Natl Acad Sci USA. 2013; 110 (51): 20563- 8.

[49]

Dey SS , Foley JE , Limsirichai P , Schaffer DV , Arkin AP . Orthogonal control of expression mean and variance by epigenetic features at different genomic loci. Mol Syst Biol. 2015; 11 (5): 806.

[50]

Dar RD , Razooky BS , Singh A , Trimeloni TV , McCollum JM , Cox CD , et al. Transcriptional burst frequency and burst size are equally modulated across the human genome. Proc Natl Acad Sci USA. 2012; 109 (43): 17454- 9.

[51]

Razooky BS , Pai A , Aull K , Rouzine IM , Weinberger LS . A hardwired HIV latency program. Cell. 2015; 160 (5): 990- 1001.

[52]

Blake WJ , Balázsi G , Kohanski MA , Isaacs FJ , Murphy KF , Kuang Y , et al. Phenotypic consequences of promoter-mediated transcriptional noise. Mol Cell. 2006; 24 (6): 853- 65.

[53]

Liu J , Martin-Yken H , Bigey F , Dequin S , François JM , Capp JP . Natural yeast promoter variants reveal epistasis in the generation of transcriptional-mediated noise and its potential benefit in stressful conditions. Genome Biol Evol. 2015; 7 (4): 969- 84.

[54]

Zong C , So L , Sepúlveda LA , Skinner SO , Golding I . Lysogen stability is determined by the frequency of activity bursts from the fate-determining gene. Mol Syst Biol. 2010; 6 (1): 440.

[55]

Uphoff S , Lord ND , Okumus B , Potvin-Trottier L , Sherratt DJ , Paulsson J . Stochastic activation of a DNA damage response causes cell-to-cell mutation rate variation. Science. 2016; 351 (6277): 1094- 7.

[56]

Zhang J , Chen L , Zhou T . Analytical distribution and tunability of noise in a model of promoter progress. Biophys J. 2012; 102 (6): 1247- 57.

[57]

Yang X , Wang Z , Wu Y , Zhou T , Zhang J . Kinetic characteristics of transcriptional bursting in a complex gene model with cyclic promoter structure. Math Biosci Eng. 2022; 19 (4): 3313- 36.

[58]

Zhang J , Zhou T . Promoter-mediated transcriptional dynamics. Biophys J. 2014; 106 (2): 479- 88.

[59]

Luo S , Zhang Z , Wang Z , Yang X , Chen X , Zhou T , et al. Inferring transcriptional bursting kinetics from single-cell snapshot data using a generalized telegraph model. R Soc Open Sci. 2023; 10 (4): 221057.

[60]

Yang X , Luo S , Zhang Z , Wang Z , Zhou T , Zhang J . Silent transcription intervals and translational bursting lead to diverse phenotypic switching. Phys Chem Chem Phys. 2022; 24 (43): 26600- 8.

[61]

Zheng M , Qiu Z , Jiao F , Sun Q . A novel computational method for two-state transcription model with non-exponential ON and OFF durations. CSAIM Trans Appl Math. 2024; 5 (2): 295- 319.

[62]

Zhang J , Zhou T . Stationary moments, distribution conjugation and phenotypic regions in stochastic gene transcription. Math Biosci Eng. 2019; 16 (5): 6134- 66.

[63]

Zhang C , Jiao F . Using steady-state formula to estimate time-dependent parameters of stochastic gene transcription models. Biosystems. 2024; 236: 105128.

[64]

Miller C , Schwalb B , Maier K , Schulz D , Dümcke S , Zacher B , et al. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol. 2011; 7 (1): 458.

[65]

Pelechano V , Chavez S , Perez-Ortin JE . A complete set of nascent transcription rates for yeast genes. PLoS One. 2010; 5 (11): e15442.

RIGHTS & PERMISSIONS

The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (2035KB)

286

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/