Stochastic thermodynamics for biological functions

Yuansheng Cao , Shiling Liang

Quant. Biol. ›› 2025, Vol. 13 ›› Issue (1) : e75

PDF (892KB)
Quant. Biol. ›› 2025, Vol. 13 ›› Issue (1) : e75 DOI: 10.1002/qub2.75
REVIEW ARTICLE

Stochastic thermodynamics for biological functions

Author information +
History +
PDF (892KB)

Abstract

Living systems operate within physical constraints imposed by nonequilibrium thermodynamics. This review explores recent advancements in applying these principles to understand the fundamental limits of biological functions. We introduce the framework of stochastic thermodynamics and its recent developments, followed by its application to various biological systems. We emphasize the interconnectedness of kinetics and energetics within this framework, focusing on how network topology, kinetics, and energetics influence functions in thermodynamically consistent models. We discuss examples in the areas of molecular machine, error correction, biological sensing, and collective behaviors. This review aims to bridge physics and biology by fostering a quantitative understanding of biological functions.

Keywords

biological functions / physical constraints / stochastic thermodynamics

Cite this article

Download citation ▾
Yuansheng Cao, Shiling Liang. Stochastic thermodynamics for biological functions. Quant. Biol., 2025, 13(1): e75 DOI:10.1002/qub2.75

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Orth JD , Thiele I , Palsson . What is flux balance analysis? Nat Biotechnol. 2010; 28 (3): 245- 8.

[2]

Niebel B , Leupold S , Heinemann M . An upper limit on Gibbs energy dissipation governs cellular metabolism. Nat Metab. 2019; 1 (1): 125- 32.

[3]

Lebowitz JL , Bergmann PG . Irreversible gibbsian ensembles. Ann Phys. 1957; 1 (1): 1- 23.

[4]

Prigogine I . Introduction to thermodynamics of irreversible processes. New York: John Wiley & Sons; 1967.

[5]

Hill T . Free energy transduction in biology: the steady-state kinetic and thermodynamic formalism. New York: Academic Press; 1977.

[6]

Sekimoto K . Stochastic energetics, volume 799 of lecture notes in physics. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010.

[7]

Evans DJ , Cohen EGD , Morriss GP . Probability of second law violations in shearing steady states. Phys Rev Lett. 1993; 71 (15): 2401- 4.

[8]

Jarzynski C . Nonequilibrium equality for free energy differences. Phys Rev Lett. 1997; 78 (14): 2690- 3.

[9]

Crooks GE . Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J Stat Phys. 1998; 90 (5): 1481- 7.

[10]

Barato AC , Seifert U . Thermodynamic uncertainty relation for biomolecular processes. Phys Rev Lett. 2015; 114 (15): 158101.

[11]

Owen JA , Gingrich TR , Horowitz JM . Universal thermodynamic bounds on nonequilibrium response with biochemical applications. Phys Rev X. 2020; 10 (1): 011066.

[12]

Hopfield JJ . Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci USA. 1974; 71 (10): 4135- 9.

[13]

Astumian RD . Thermodynamics and kinetics of a Brownian motor. Science. 1997; 276 (5314): 917- 22.

[14]

Goloubinoff P , Sassi AS , Fauvet B , Barducci A , De Los Rios P . Chaperones convert the energy from ATP into the nonequilibrium stabilization of native proteins. Nat Chem Biol. 2018; 14 (4): 388- 95.

[15]

Busiello DM , Liang S , Piazza F , De Los Rios P . Dissipation-driven selection of states in non-equilibrium chemical networks. Commun Chem. 2021; 4 (1): 16.

[16]

Seifert U . Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys Rev Lett. 2005; 95 (4): 040602.

[17]

Seifert U . Stochastic thermodynamics, fluctuation theorems, and molecular machines. Rep Prog Phys. 2012; 75 (12): 126001.

[18]

Peliti L , Pigolotti S . Stochastic thermodynamics: an introduction. Princeton, NJ: Princeton University Press; 2021.

[19]

King EL , Altman C . A schematic method of deriving the rate laws for enzyme-catalyzed reactions. J Phys Chem. 1956; 60 (10): 1375- 8.

[20]

Schnakenberg J . Network theory of microscopic and macroscopic behavior of master equation systems. Rev Mod Phys. 1976; 48 (4): 571- 85.

[21]

Hill TL . Free energy transduction and biochemical cycle kinetics. New York: Springer; 1989.

[22]

Owen JA , Horowitz JM . Size limits the sensitivity of kinetic schemes. Nat Commun. 2023; 14 (1): 1280.

[23]

Liang S , De Los Rios P , Busiello DM . Thermodynamic bounds on symmetry breaking in linear and catalytic biochemical systems. Phys Rev Lett. 2024; 132 (22): 228402.

[24]

Nam K-M , Gunawardena J . The linear framework Ⅱ: using graph theory to analyse the transient regime of Markov processes. Front Cell Dev Biol. 2023; 11: 1233808.

[25]

Maes C . Local detailed balance. SciPost Phys Lect Notes. 2021: 32.

[26]

Kolmogoroff A . Zur Theorie der Markoffschen Ketten. Math Ann. 1936; 112 (1): 155- 60.

[27]

Esposito M , Van den Broeck C . Three detailed fluctuation theorems. Phys Rev Lett. 2010; 104 (9): 090601.

[28]

Crooks GE . Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys Rev. 1999; 60 (3): 2721- 6.

[29]

Jarzynski C . Hamiltonian derivation of a detailed fluctuation theorem. J Stat Phys. 2000; 98 (1): 77- 102.

[30]

Åberg J . Fully quantum fluctuation theorems. Phys Rev X. 2018; 8 (1): 011019.

[31]

Sagawa T , Ueda M . Generalized Jarzynski equality under nonequilibrium feedback control. Phys Rev Lett. 2010; 104 (9): 090602.

[32]

Gingrich TR , Horowitz JM , Perunov N , England JL . Dissipation bounds all steady-state current fluctuations. Phys Rev Lett. 2016; 116 (12): 120601.

[33]

Pigolotti S , Neri I , Roldán É , Jülicher F . Generic properties of stochastic entropy production. Phys Rev Lett. 2017; 119 (14): 140604.

[34]

Dechant A . Multidimensional thermodynamic uncertainty relations. J Phys Math Theor. 2018; 52 (3): 035001.

[35]

Dechant A , Sasa S-I . Fluctuation-response inequality out of equilibrium. Proc Natl Acad Sci USA. 2020; 117 (12): 6430- 6.

[36]

Hasegawa Y , Van Vu T . Uncertainty relations in stochastic processes: an information inequality approach. Phys Rev. 2019; 99 (6): 062126.

[37]

Dieball C , Godec A . Direct route to thermodynamic uncertainty relations and their saturation. Phys Rev Lett. 2023; 130 (8): 087101.

[38]

Ziyin L , Ueda M . Universal thermodynamic uncertainty relation in nonequilibrium dynamics. Phys Rev Res. 2023; 5 (1): 013039.

[39]

Pietzonka P . Classical pendulum clocks break the thermodynamic uncertainty relation. Phys Rev Lett. 2022; 128 (13): 130606.

[40]

Horowitz JM , Gingrich TR . Thermodynamic uncertainty relations constrain non-equilibrium fluctuations. Nat Phys. 2020; 16 (1): 15- 20.

[41]

Van Vu T , Hasegawa Y . Uncertainty relations for underdamped Langevin dynamics. Phys Rev. 2019; 100 (3): 032130.

[42]

Lee JS , Park J-M , Park H . Thermodynamic uncertainty relation for underdamped Langevin systems driven by a velocity-dependent force. Phys Rev. 2019; 100 (6): 062132.

[43]

Plati A , Puglisi A , Sarracino A . Thermodynamic bounds for diffusion in nonequilibrium systems with multiple timescales. Phys Rev. 2023; 107 (4): 044132.

[44]

Plati A , Puglisi A , Sarracino A . Thermodynamic uncertainty relations in the presence of non-linear friction and memory. J Phys Math Theor. 2024; 57 (15): 155001.

[45]

Cao Y , Wang H , Ouyang Q , Tu Y . The free-energy cost of accurate biochemical oscillations. Nat Phys. 2015; 11 (9): 772- 8.

[46]

Barato AC , Seifert U . Coherence of biochemical oscillations is bounded by driving force and network topology. Phys Rev. 2017; 95 (6): 062409.

[47]

Oberreiter L , Seifert U , Barato AC . Universal minimal cost of coherent biochemical oscillations. Phys Rev. 2022; 106 (1): 014106.

[48]

Marsland R , Cui W , Horowitz JM . The thermodynamic uncertainty relation in biochemical oscillations. J R Soc Interface. 2019; 16 (154): 20190098.

[49]

Sartori P , Pigolotti S . Kinetic versus energetic discrimination in biological copying. Phys Rev Lett. 2013; 110 (18): 188101.

[50]

Tu Y . The nonequilibrium mechanism for ultrasensitivity in a biological switch: sensing by Maxwell’s demons. Proc Natl Acad Sci USA. 2008; 105 (33): 11737- 41.

[51]

ten Wolde PR , Becker NB , Ouldridge TE , Mugler A . Fundamental limits to cellular sensing. J Stat Phys. 2016; 162 (5): 1395- 424.

[52]

Marconi UMB , Puglisi A , Rondoni L , Vulpiani A . Fluctuation-dissipation: response theory in statistical physics. Phys Rep. 2008; 461 (4): 111- 95.

[53]

Harada T , Sasa S-I . Equality connecting energy dissipation with a violation of the fluctuation-response relation. Phys Rev Lett. 2005; 95 (13): 130602.

[54]

Harada T , Sasa S-I . Energy dissipation and violation of the fluctuation-response relation in nonequilibrium Langevin systems. Phys Rev. 2006; 73 (2): 026131.

[55]

Fernandes Martins G , Horowitz JM . Topologically constrained fluctuations and thermodynamics regulate nonequilibrium response. Phys Rev. 2023; 108 (4): 044113.

[56]

Aslyamov T , Esposito M . Nonequilibrium response for Markov jump processes: exact results and tight bounds. Phys Rev Lett. 2024; 132 (3): 037101.

[57]

Sartori P , Pigolotti S . Thermodynamics of error correction. Phys Rev X. 2015; 5 (4): 041039.

[58]

Avanzini F , Falasco G , Esposito M . Thermodynamics of chemical waves. J Chem Phys. 2019; 151 (23): 234103.

[59]

Liang S , Busiello DM , De Los Rios P . Emergent thermophoretic behavior in chemical reaction systems. New J Phys. 2022; 24 (12): 123006.

[60]

Flatt S , Busiello DM , Zamuner S , De Los Rios P . ABC transporters are billion-year-old Maxwell Demons. Commun Phys. 2023; 6 (1): 205.

[61]

Maes C , Netočný K . Heat bounds and the blowtorch theorem. Ann Henri Poincaré. 2013; 14 (5): 1193- 202.

[62]

Çetiner U , Gunawardena J . Reformulating nonequilibrium steady states and generalized Hopfield discrimination. Phys Rev. 2022; 106 (6): 064128.

[63]

Qian H . Reducing intrinsic biochemical noise in cells and its thermodynamic limit. J Mol Biol. 2006; 362 (3): 387- 92.

[64]

Nguyen B , Hartich D , Seifert U , De Los Rios P . Thermodynamic bounds on the ultra-and infra-affinity of Hsp70 for its substrates. Biophys J. 2017; 113 (2): 362- 70.

[65]

Liang S , Pigolotti S . Thermodynamic bounds on time-reversal asymmetry. Phys Rev. 2023; 108 (6): L062101.

[66]

Ohga N , Ito S , Kolchinsky A . Thermodynamic bound on the asymmetry of cross-correlations. Phys Rev Lett. 2023; 131 (7): 077101.

[67]

Shiraishi N . Entropy production limits all fluctuation oscillations. Phys Rev. 2023; 108 (4): L042103.

[68]

Van Vu T , Vo VT , Saito K . Dissipation bounds asymmetry of finite-time cross-correlations. Phys Rev Res. 2024; 6 (1): 013273.

[69]

Gu J . Thermodynamic bounds on the asymmetry of cross-correlations with dynamical activity and entropy production. Phys Rev. 2024; 109 (4): L042101.

[70]

Qian H , Elson EL . Fluorescence correlation spectroscopy with high-order and dual-color correlation to probe nonequilibrium steady states. Proc Natl Acad Sci USA. 2004; 101 (9): 2828- 33.

[71]

Bacanu A , Pelletier JF , Jung Y , Fakhri N . Inferring scale-dependent non-equilibrium activity using carbon nanotubes. Nat Nanotechnol. 2023; 18 (8): 905- 11.

[72]

Feinberg M . Foundations of chemical reaction network theory, volume 202 of applied mathematical sciences. Cham: Springer International Publishing; 2019.

[73]

Esposito M . Open questions on nonequilibrium thermodynamics of chemical reaction networks. Commun Chem. 2020; 3 (1): 107.

[74]

Qian H . Phosphorylation energy hypothesis: open chemical systems and their biological functions. Annu Rev Phys Chem. 2007; 58 (1): 113- 42.

[75]

Ge H , Qian H . Nonequilibrium thermodynamic formalism of nonlinear chemical reaction systems with Waage-Guldberg’s law of mass action. Chem Phys. 2016; 472: 241- 8.

[76]

Rao R , Esposito M . Nonequilibrium thermodynamics of chemical reaction networks: wisdom from stochastic thermodynamics. Phys Rev X. 2016; 6 (4): 041064.

[77]

Qian H , Beard DA . Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. Biophys Chem. 2005; 114 (2-3): 213- 20.

[78]

Qian H . Thermodynamic and kinetic analysis of sensitivity amplification in biological signal transduction. Biophys Chem. 2003; 105 (2-3): 585- 93.

[79]

Yoshimura K , Kolchinsky A , Dechant A , Ito S . Housekeeping and excess entropy production for general nonlinear dynamics. Phys Rev Res. 2023; 5 (1): 013017.

[80]

Kobayashi TJ , Loutchko D , Kamimura A , Sughiyama Y . Geometry of nonequilibrium chemical reaction networks and generalized entropy production decompositions. 2022.

[81]

Yoshimura K , Ito S . Information geometric inequalities of chemical thermodynamics. Phys Rev Res. 2021; 3 (1): 013175.

[82]

Chun H-M , Horowitz JM . Trade-offs between number fluctuations and response in nonequilibrium chemical reaction networks. J Chem Phys. 2023; 158 (17): 174115.

[83]

Avanzini F , Freitas N , Esposito M . Circuit theory for chemical reaction networks. Phys Rev X. 2023; 13 (2): 021041.

[84]

Yu Q , Zhang D , Tu Y . Inverse power law scaling of energy dissipation rate in nonequilibrium reaction networks. Phys Rev Lett. 2021; 126 (8): 080601.

[85]

Yu Q , Tu Y . State-space renormalization group theory of nonequilibrium reaction networks: exact solutions for hypercubic lattices in arbitrary dimensions. Phys Rev E. 2022; 105 (4): 044140.

[86]

Falasco G , Rao R , Esposito M . Information thermodynamics of Turing patterns. Phys Rev Lett. 2018; 121 (10): 108301.

[87]

Brauns F , Halatek J , Frey E . Phase-space geometry of mass-conserving reaction-diffusion dynamics. Phys Rev X. 2020; 10 (4): 041036.

[88]

Diego X , Marcon L , Müller P , Sharpe J . Key features of Turing systems are determined purely by network topology. Phys Rev X. 2018; 8 (2): 021071.

[89]

Sughiyama Y , Kamimura A , Loutchko D , Kobayashi TJ . Chemical thermodynamics for growing systems. Phys Rev Res. 2022; 4 (3): 033191.

[90]

Brangwynne CP , Eckmann CR , Courson DS , Rybarska A , Hoege C , Gharakhani J , et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science. 2009; 324 (5935): 1729- 32.

[91]

Luo C , Zwicker D . Influence of physical interactions on spatiotemporal patterns. Phys Rev. 2023; 108 (3): 034206.

[92]

Menou L , Luo C , Zwicker D . Physical interactions in non-ideal fluids promote Turing patterns. J R Soc Interface. 2023; 20 (204): 20230244.

[93]

Zwicker D , Hyman AA , Jülicher F . Suppression of Ostwald ripening in active emulsions. Phys Rev. 2015; 92 (1): 012317.

[94]

Zwicker D , Seyboldt R , Weber CA , Hyman AA , Jülicher F . Growth and division of active droplets provides a model for protocells. Nat Phys. 2017; 13 (4): 408- 13.

[95]

Demarchi L , Goychuk A , Maryshev I , Frey E . Enzyme-enriched condensates show self-propulsion, positioning, and coexistence. Phys Rev Lett. 2023; 130 (12): 128401.

[96]

Aslyamov T , Avanzini F , Fodor É , Esposito M . Nonideal reaction-diffusion systems: multiple routes to instability. Phys Rev Lett. 2023; 131 (13): 138301.

[97]

Miangolarra AM , Castellana M . On non-ideal chemical-reaction networks and phase separation. J Stat Phys. 2022; 190 (1): 23.

[98]

Feynman RP , Leighton RB , Sands M . The Feynman lectures on physics; vol. I. Am J Phys. 1965; 33 (9): 750- 2.

[99]

Hartich D , Godec A . Thermodynamic uncertainty relation bounds the extent of anomalous diffusion. Phys Rev Lett. 2021; 127 (8): 080601.

[100]

Pietzonka P , Barato AC , Seifert U . Universal bound on the efficiency of molecular motors. J Stat Mech Theor Exp. 2016; 2016 (12): 124004.

[101]

Tu Y , Cao Y . Design principles and optimal performance for molecular motors under realistic constraints. Phys Rev. 2018; 97 (2): 022403.

[102]

Barato AC , Seifert U . Cost and precision of Brownian clocks. Phys Rev X. 2016; 6 (4): 041053.

[103]

Deme JC , Johnson S , Vickery O , Aron A , Monkhouse H , Griffiths T , et al. Structures of the stator complex that drives rotation of the bacterial flagellum. Nat Microbiol. 2020; 5 (12): 1553- 64.

[104]

Santiveri M , Roa-Eguiara A , Kühne C , Wadhwa N , Hu H , Berg HC , et al. Structure and function of stator units of the bacterial flagellar motor. Cell. 2020; 183 (1): 244- 57.

[105]

Chang Y , Zhang K , Carroll BL , Zhao X , Charon NW , Norris SJ , et al. Molecular mechanism for rotational switching of the bacterial flagellar motor. Nat Struct Mol Biol. 2020; 27 (11): 1041- 7.

[106]

Cao Y , Li T , Tu Y . Modeling bacterial flagellar motor with new structure information: rotational dynamics of two interacting protein nano-rings. Front Microbiol. 2022; 13: 866141.

[107]

Johnson KA . Conformational coupling in DNA polymerase fidelity. Annu Rev Biochem. 1993; 62 (1): 685- 713.

[108]

Hani SZ , Green R . Fidelity at the molecular level: lessons from protein synthesis. Cell. 2009; 136 (4): 746- 62.

[109]

Ninio J . Kinetic amplification of enzyme discrimination. Biochimie. 1975; 57 (5): 587- 95.

[110]

Murugan A , Huse DA , Leibler S . Speed, dissipation, and error in kinetic proofreading. Proc Natl Acad Sci USA. 2012; 109 (30): 12034- 9.

[111]

Ge H , Qian M , Qian H . Stochastic theory of nonequilibrium steady states. Part Ⅱ: applications in chemical biophysics. Phys Rep. 2012; 510 (3): 87- 118.

[112]

Murugan A , Huse DA , Leibler S . Discriminatory proofreading regimes in nonequilibrium systems. Phys Rev X. 2014; 4 (2): 021016.

[113]

Rao R , Peliti L . Thermodynamics of accuracy in kinetic proofreading: dissipation and efficiency trade-offs. J Stat Mech Theor Exp. 2015; 2015 (6): P060011.

[114]

Sourjik V , Berg HC . Receptor sensitivity in bacterial chemotaxis. Proc Natl Acad Sci USA. 2002; 99 (1): 123- 7.

[115]

Ueda M , Shibata T . Stochastic signal processing and transduction in chemotactic response of eukaryotic cells. Biophys J. 2007; 93 (1): 11- 20.

[116]

Goldbeter A , Koshland DE Jr . An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA. 1981; 78 (11): 6840- 4.

[117]

Ferrell JE , Ha SH . Ultrasensitivity part Ⅲ: cascades, bistable switches, and oscillators. Trends Biochem Sci. 2014; 39 (12): 612- 8.

[118]

Dubuis JO , Tkačik G , Wieschaus EF , Gregor T , Bialek W . Positional information, in bits. Proc Natl Acad Sci USA. 2013; 110 (41): 16301- 8.

[119]

Gregor T , Tank DW , Wieschaus EF , Bialek W . Probing the limits to positional information. Cell. 2007; 130 (1): 153- 64.

[120]

Bacon F , Wyman J , Changeux JP . On the nature of allosteric transitions: a plausible model. J Mol Biol. 1965; 12 (1): 88- 118.

[121]

Duke TAJ , Le Novere N , Bray D . Conformational spread in a ring of proteins: a stochastic approach to allostery. J Mol Biol. 2001; 308 (3): 541- 53.

[122]

Tu Y . Quantitative modeling of bacterial chemotaxis: signal amplification and accurate adaptation. Annu Rev Biophys. 2013; 42 (1): 337- 59.

[123]

Hill AV . The possible effects of the aggregation of the molecules of hemoglobin on its dissociation curves. J Physiol. 1910; 40: ivvii.

[124]

Cluzel P , Surette M , Leibler S . An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science. 2000; 287 (5458): 1652- 5.

[125]

Yuan J , Berg HC . Ultrasensitivity of an adaptive bacterial motor. J Mol Biol. 2013; 425 (10): 1760- 4.

[126]

Huang C-Y , Ferrell JE Jr . Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA. 1996; 93 (19): 10078- 83.

[127]

Hartich D , Barato AC , Seifert U . Nonequilibrium sensing and its analogy to kinetic proofreading. New J Phys. 2015; 17 (5): 055026.

[128]

Skoge M , Naqvi S , Meir Y , Wingreen NS . Chemical sensing by nonequilibrium cooperative receptors. Phys Rev Lett. 2013; 110 (24): 248102.

[129]

Estrada J , Wong F , DePace A , Gunawardena J . Information integration and energy expenditure in gene regulation. Cell. 2016; 166 (1): 234- 44.

[130]

Wong F , Gunawardena J . Gene regulation in and out of equilibrium. Annu Rev Biophys. 2020; 49 (1): 199- 226.

[131]

Mahdavi S , Salmon GL , Daghlian P , Garcia HG , Phillips R . Flexibility and sensitivity in gene regulation out of equilibrium. 2023. 2023. Preprint at bioRxiv: 2023.04.11.536490.

[132]

Lan G , Sartori P , Neumann S , Sourjik V , Tu Y . The energy-speed-accuracy trade-off in sensory adaptation. Nat Phys. 2012; 8 (5): 422- 8.

[133]

Lan G , Tu Y . The cost of sensitive response and accurate adaptation in networks with an incoherent type-1 feed-forward loop. J R Soc Interface. 2013; 10 (87): 20130489.

[134]

Sartori P , Granger L , Lee CF , Horowitz JM . Thermodynamic costs of information processing in sensory adaptation. PLoS Comput Biol. 2014; 10 (12): e1003974.

[135]

Tu Y , Rappel W-J . Adaptation in living systems. Annu Rev Condens Matter Phys. 2018; 9 (1): 183- 205.

[136]

Berg HC , Purcell EM . Physics of chemoreception. Biophys J. 1977; 20 (2): 193- 219.

[137]

Bialek W , Setayeshgar S . Physical limits to biochemical signaling. Proc Natl Acad Sci USA. 2005; 102 (29): 10040- 5.

[138]

Endres RG , Wingreen NS . Maximum likelihood and the single receptor. Phys Rev Lett. 2009; 103 (15): 158101.

[139]

Govern CC , ten Wolde PR . Fundamental limits on sensing chemical concentrations with linear biochemical networks. Phys Rev Lett. 2012; 109 (21): 218103.

[140]

Lang AH , Fisher CK , Mora T , Mehta P . Thermodynamics of statistical inference by cells. Phys Rev Lett. 2014; 113 (14): 148103.

[141]

Govern CC , ten Wolde PR . Energy dissipation and noise correlations in biochemical sensing. Phys Rev Lett. 2014; 113 (25): 258102.

[142]

Govern CC , Ten Wolde PR . Optimal resource allocation in cellular sensing systems. Proc Natl Acad Sci USA. 2014; 111 (49): 17486- 91.

[143]

Fei C , Cao Y , Ouyang Q , Tu Y . Design principles for enhancing phase sensitivity and suppressing phase fluctuations simultaneously in biochemical oscillatory systems. Nat Commun. 2018; 9 (1): 1434.

[144]

Vicsek T , Czirók A , Ben-Jacob E , Cohen I , Shochet O . Novel type of phase transition in a system of self-driven particles. Phys Rev Lett. 1995; 75 (6): 1226- 9.

[145]

Kuramoto Y . Chemical oscillations, waves and chemical turbulence. Heidelberg: Springer; 1984.

[146]

Herpich T , Thingna J , Esposito M . Collective power: minimal model for thermodynamics of nonequilibrium phase transitions. Phys Rev X. 2018; 8 (3): 031056.

[147]

Yu Q , Tu Y . Energy cost for flocking of active spins: the cusped dissipation maximum at the flocking transition. Phys Rev Lett. 2022; 129 (27): 278001.

[148]

Zhang D , Cao Y , Ouyang Q , Tu Y . The energy cost and optimal design for synchronization of coupled molecular oscillators. Nat Phys. 2020; 16 (1): 95- 100.

[149]

Kageyama H , Nishiwaki T , Nakajima M , Iwasaki H , Oyama T , Kondo T . Cyanobacterial circadian pacemaker: Kai protein complex dynamics in the KaiC phosphorylation cycle in vitro. Mol Cell. 2006; 23 (2): 161- 71.

[150]

Terauchi K , Kitayama Y , Nishiwaki T , Miwa K , Murayama Y , Oyama T , et al. ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria. Proc Natl Acad Sci USA. 2007; 104 (41): 16377- 81.

[151]

Shiraishi N , Sagawa T . Fluctuation theorem for partially masked nonequilibrium dynamics. Phys Rev. 2015; 91 (1): 012130.

[152]

Martínez IA , Bisker G , Horowitz JM , Parrondo JMR . Inferring broken detailed balance in the absence of observable currents. Nat Commun. 2019; 10 (1): 3542.

[153]

Lucente D , Baldassarri A , Puglisi A , Vulpiani A , Viale M . Inference of time irreversibility from incomplete information: linear systems and its pitfalls. Phys Rev Res. 2022; 4 (4): 043103.

[154]

Harunari PE , Dutta A , Polettini M , Roldán É . What to learn from a few visible transitions’ statistics? Phys Rev X. 2022; 12 (4): 041026.

[155]

Van Der Meer J , Degünther J , Seifert U . Time-resolved statistics of snippets as general framework for model-free entropy estimators. Phys Rev Lett. 2023; 130 (25): 257101.

[156]

Pietzonka P , Coghi F . Thermodynamic cost for precision of general counting observables. 2023. Preprint at arXiv: 2305.15392.

[157]

Van Der Meer J , Ertel B , Seifert U . Thermodynamic inference in partially accessible Markov networks: a unifying perspective from transition-based waiting time distributions. Phys Rev X. 2022; 12 (3): 031025.

[158]

Nitzan E , Ghosal A , Bisker G . Universal bounds on entropy production inferred from observed statistics. Phys Rev Res. 2023; 5 (4): 043251.

[159]

Blom K , Song K , Vouga E , Godec A , Makarov DE . Milestoning estimators of dissipation in systems observed at a coarse resolution. Proc Natl Acad Sci USA. 2024; 121 (17): e2318333121.

[160]

Dominic J , Dunkel J . Skinner and Jörn Dunkel. Estimating entropy production from waiting time distributions. Phys Rev Lett. 2021; 127 (19): 198101.

[161]

Kolchinsky A , Ohga N , Ito S . Thermodynamic bound on spectral perturbations, with applications to oscillations and relaxation dynamics. Phys Rev Res. 2024; 6 (1): 013082.

[162]

Dechant A , Garnier-Brun J , Sasa S-I . Thermodynamic bounds on correlation times. Phys Rev Lett. 2023; 131 (16): 167101.

[163]

Tjalma AJ , Galstyan V , Goedhart J , Slim L , Becker NB , ten Wolde PR . Trade-offs between cost and information in cellular prediction. Proc Natl Acad Sci USA. 2023; 120 (41): e2303078120.

[164]

Degünther J , Van Der Meer J , Seifert U . Fluctuating entropy production on the coarse-grained level: inference and localization of irreversibility. Phys Rev Res. 2024; 6 (2): 023175.

[165]

Bryant SJ , Machta BB . Physical constraints in intracellular signaling: the cost of sending a bit. Phys Rev Lett. 2023; 131 (6): 068401.

RIGHTS & PERMISSIONS

The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (892KB)

542

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/