Single-cell analyses reveal impaired type B spermatogonia differentiation and meiotic entry in C-Nap1-null testes

Junlin Li , Liheng Yang , Liansheng Li , Min Li , Juntao Gao , Li Yuan

Quant. Biol. ›› 2025, Vol. 13 ›› Issue (1) : e71

PDF (4556KB)
Quant. Biol. ›› 2025, Vol. 13 ›› Issue (1) : e71 DOI: 10.1002/qub2.71
RESEARCH ARTICLE

Single-cell analyses reveal impaired type B spermatogonia differentiation and meiotic entry in C-Nap1-null testes

Author information +
History +
PDF (4556KB)

Abstract

Sperm development is critical for male reproductive capability; any disruption during the process of spermatogenesis will result in male infertility. In this research, we used the C-Nap1 encoded by the gene of Cep250 knockout mouse line as the model to evaluate the impact of absent C-Nap1 on spermatogenesis. To investigate the interaction between C-Nap1 and spermatogenesis, we utilized single-cell RNA sequencing to analyze 10,332 C-Nap1+/+ and 13,308 C-Nap1−/− testicular cells. We identified five main cell types within seminiferous tubules, including spermatogonia, Sertoli cells, spermatogonia stem cells, Leydig cells, and spermatocytes. We found a critical reduction in testicular spermatogonia and spermatocytes in C-Nap1-null testes, compared to its C-Nap1+/+ controls. By combining uniform manifold approximation and projection clustering and psedotime ordering, we distinguished five spermatogonial stages/subtypes, demonstrating that type B spermatogonia differentiation and meiotic initiation are impaired during C-Nap1-null spermatogenesis. Following gene ontology enrichment analysis, meiosis-specific genes downregulated in the C-Nap1−/− testicular cells were further verified by reverse transcription polymerase chain reaction (RT-PCR). Based on the differential gene expression, certain downregulated genes such as Ctnnb1 and Aurka encoding C-Nap1-binding potential β-Catenin and Aurka are encountered, which may account for defective type B spermatogonia differentiation and meiotic entry in C-Nap1-null testes.

Keywords

C-Nap1 / mouse testis / single-cell RNA sequencing / spermatogenesis

Cite this article

Download citation ▾
Junlin Li, Liheng Yang, Liansheng Li, Min Li, Juntao Gao, Li Yuan. Single-cell analyses reveal impaired type B spermatogonia differentiation and meiotic entry in C-Nap1-null testes. Quant. Biol., 2025, 13(1): e71 DOI:10.1002/qub2.71

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

De Rooij DG , Grootegoed JA . Spermatogonial stem cells. Curr Opin Cell Biol. 1998; 10 (6): 694- 701.

[2]

Zhou Q , Griswold MD . Regulation of spermatogonia. Int J Biomed Health Sci. 2021; 10.

[3]

Nigg EA , Raff JW . Centrioles, centrosomes, and cilia in health and disease. Cell. 2009; 139 (4): 663- 78.

[4]

Nigg EA , Stearns T . The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol. 2011; 13 (10): 1154- 60.

[5]

Faragher AJ , Fry AM . Nek2a kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol Biol Cell. 2003; 14 (7): 2876- 89.

[6]

Fang G , Zhang D , Yin H , Zheng L , Bi X , Yuan L . Centlein mediates an interaction between c-nap1 and cep68 to maintain centrosome cohesion. J Cell Sci. 2014; 127 (8): 1631- 9.

[7]

Remo A , Li X , Schiebel E , Pancione M . The centrosome linker and its role in cancer and genetic disorders. Trends Mol Med. 2020; 26 (4): 380- 93.

[8]

Eisenberg-Lerner A , Benyair R , Hizkiahou N , Nudel N , Maor R , Kramer MP , et al. Golgi organization is regulated by proteasomal degradation. Nat Commun. 2020; 11 (1): 409.

[9]

Floriot S , Bellutti L , Castille J , Moison P , Messiaen S , Passet B , et al. Cep250 is required for maintaining centrosome cohesion in the germline and fertility in male mice. Front Cell Dev Biol. 2022; 9.

[10]

Dang H , Martin-Villalba A , Schiebel E . Centrosome linker protein c-nap1 maintains stem cells in mouse testes. EMBO Rep. 2022; 23 (7): e53805.

[11]

Aibar S , González-Blas CB , Moerman T , Huynh-Thu VA , Imrichova H , Hulselmans G , et al. Scenic: single-cell regulatory network inference and clustering. Nat Methods. 2017; 14 (11): 1083- 6.

[12]

Filipponi D , Muller J , Emelyanov A , Bulavin DV . Wip1 controls global heterochromatin silencing via atm/brca1-dependent DNA methylation. Cancer Cell. 2013; 24 (4): 528- 41.

[13]

Xu X , Aprelikova O , Moens P , Deng C-X , Furth PA . Impaired meiotic DNA-damage repair and lack of crossing-over during spermatogenesis in brca1 full-length isoform deficient mice. Development. 2003; 130 (9): 2001- 12.

[14]

Lazar-Contes I , Tanwar DK , Arzate-Mejia RG , Steg LC , Feudjio OU , Crespo M , et al. Dynamics of transcriptional programs and chromatin accessibility in mouse spermatogonial cells from early postnatal to adult life. Elife. 2023; 12.

[15]

Cao J , Spielmann M , Qiu X , Huang X , Ibrahim DM , Hill AJ , et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019; 566 (7745): 496- 502.

[16]

Morabito S , Miyoshi E , Michael N , Shahin S , Martini AC , Head E , et al. Single-nucleus chromatin accessibility and transcriptomic characterization of alzheimer’s disease. Nat Genet. 2021; 53 (8): 1143- 55.

[17]

Zhu F , Liu C , Wang F , Yang X , Zhang J , Wu H , et al. Mutations in pmfbp1 cause acephalic spermatozoa syndrome. Am J Hum Genet. 2018; 103 (2): 188- 99.

[18]

Von Mering C , Jensen LJ , Snel B , Hooper SD , Krupp M , Foglierini M , et al. String: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005; 33 (Database issue): D433- 7.

[19]

Griswold MD . Spermatogenesis: the commitment to meiosis. Physiol Rev. 2016; 96: 1- 17.

[20]

Chen J , Gao C , Lin X , Ning Y , He W , Zheng C , et al. The microrna mir-202 prevents precocious spermatogonial differentiation and meiotic initiation during mouse spermatogenesis. Development. 2021; 148 (24): dev199799.

[21]

Nelson WJ , Nusse R . Convergence of wnt, ß-catenin, and cadherin pathways. Science. 2004; 303 (5663): 1483- 7.

[22]

Bahmanyar S , Kaplan DD , DeLuca JG , Giddings TH , O’Toole ET , Winey M , et al. Β-catenin is a nek2 substrate involved in centrosome separation. Genes Dev. 2008; 22 (1): 91- 105.

[23]

Lester WC , Johnson T , Hale B , Serra N , Elgart B , Wang R , et al. Aurora a kinase (aurka) is required for male germline maintenance and regulates sperm motility in the mouse. Biol Reprod. 2021; 105 (6): 1603- 16.

[24]

Zheng GX , Terry JM , Belgrader P , Ryvkin P , Bent ZW , Wilson R , et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017; 8 (1): 14049.

[25]

Hao Y , Hao S , Andersen-Nissen E , Mauck WM , Zheng S , Butler A , et al. Integrated analysis of multimodal single-cell data. Cell. 2021; 184 (13): 3573- 87.e3529.

[26]

Hafemeister C , Satija R . Normalization and variance stabilization of single-cell rna-seq data using regularized negative binomial regression. Genome Biol. 2019; 20 (1): 296.

[27]

Hu C , Li T , Xu Y , Zhang X , Li F , Bai J , et al. Cellmarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scrna-seq data. Nucleic Acids Res. 2023; 51 (D1): D870- 6.

[28]

Efremova M , Vento-Tormo M , Teichmann SA , Vento-Tormo R . Cellphonedb: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc. 2020; 15 (4): 1484- 506.

[29]

Browaeys R , Saelens W , Saeys Y . Nichenet: modeling intercellular communication by linking ligands to target genes. Nat Methods. 2020; 17 (2): 159- 62.

[30]

Bergen V , Lange M , Peidli S , Wolf FA , Theis FJ . Generalizing rna velocity to transient cell states through dynamical modeling. Nat Biotechnol. 2020; 38 (12): 1408- 14.

[31]

Trapnell C , Cacchiarelli D , Grimsby J , Pokharel P , Li S , Morse M , et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014; 32 (4): 381- 6.

[32]

Szklarczyk D , Kirsch R , Koutrouli M , Nastou K , Mehryary F , Hachilif R , et al. The string database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023; 51 (D1): D638- 46.

RIGHTS & PERMISSIONS

The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (4556KB)

277

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/