Single-cell mitochondrial lineage tracing: Opportunities and challenges

Siqi Li , Kun Wang , Xin Wang , Zheng Hu

Quant. Biol. ›› 2026, Vol. 14 ›› Issue (1) : e70018

PDF (1590KB)
Quant. Biol. ›› 2026, Vol. 14 ›› Issue (1) : e70018 DOI: 10.1002/qub2.70018
REVIEW ARTICLE

Single-cell mitochondrial lineage tracing: Opportunities and challenges

Author information +
History +
PDF (1590KB)

Abstract

Lineage tracing using endogenous mitochondrial DNA (mtDNA) variants holds great promise for reconstructing the lineage histories of individual cells, with broad applications in oncology, developmental biology, and regenerative medicine. Unlike synthetic DNA barcoding techniques, mitochondrial lineage tracing does not require genetic engineering of exogenous genetic markers, and thus is particularly suitable for human clinical samples. Various experimental and computational methods have been developed to profile mtDNA variants from single-cell genomic, transcriptomic, and epigenomic sequencing data. Despite the technical advances, several challenges still limit the robustness of single-cell mitochondrial lineage tracing, such as random genetic drift, genetic bottlenecks, informative variant identification, and low mtDNA coverage. In this review, we systematically examine current experimental and computational approaches for analyzing mtDNA variants in single cells and discuss current challenges and future technical developments aimed at enhancing the robustness and applicability of single-cell mitochondrial lineage tracing.

Keywords

lineage tracing / mtDNA variants / phylogenetic reconstruction / single-cell genomics

Cite this article

Download citation ▾
Siqi Li, Kun Wang, Xin Wang, Zheng Hu. Single-cell mitochondrial lineage tracing: Opportunities and challenges. Quant. Biol., 2026, 14(1): e70018 DOI:10.1002/qub2.70018

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pijuan-Sala B , Guibentif C , Göttgens B . Single-cell transcriptional profiling: a window into embryonic cell-type specification. Nat Rev Mol Cell Biol. 2018; 19 (6): 399- 412.

[2]

Anderson NM , Simon MC . The tumor microenvironment. Curr Biol. 2020; 30 (16): R921- 5.

[3]

Baron CS , van Oudenaarden A . Unravelling cellular relationships during development and regeneration using genetic lineage tracing. Nat Rev Mol Cell Biol. 2019; 20 (12): 753- 65.

[4]

Penter L , Gohil SH , Lareau C , Ludwig LS , Parry EM , Huang T , et al. Longitudinal single-cell dynamics of chromatin accessibility and mitochondrial mutations in chronic lymphocytic leukemia mirror disease history. Cancer Discov. 2021; 11 (12): 3048- 63.

[5]

Yang D , Jones MG , Naranjo S , Rideout WM Ⅲ , Min KHJ , Ho R , et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell. 2022; 185 (11): 1905- 23.e1925.

[6]

Weng C , Yu F , Yang D , Poeschla M , Liggett LA , Jones MG , et al. Deciphering cell states and genealogies of human haematopoiesis. Nature. 2024; 627 (8003): 389- 98.

[7]

Sulston JE , Schierenberg E , White JG , Thomson JN . The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983; 100 (1): 64- 119.

[8]

Kretzschmar K , Watt FM . Lineage tracing. Cell. 2012; 148 (1-2): 33- 45.

[9]

Bhang HE , Ruddy DA , Krishnamurthy Radhakrishna V , Caushi JX , Zhao R , Hims MM , et al. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat Med. 2015; 21 (5): 440- 8.

[10]

McKenna A , Findlay GM , Gagnon JA , Horwitz MS , Schier AF , Shendure J . Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science. 2016; 353 (6298): aaf7907.

[11]

Liu K , Deng S , Ye C , Yao Z , Wang J , Gong H , et al. Mapping single-cell-resolution cell phylogeny reveals cell population dynamics during organ development. Nat Methods. 2021; 18 (12): 1506- 14.

[12]

Lu Z , Mo S , Xie D , Zhai X , Deng S , Zhou K , et al. Polyclonal-to-monoclonal transition in colorectal precancerous evolution. Nature. 2024; 636 (8041): 233- 40.

[13]

Wagner DE , Klein AM . Lineage tracing meets single-cell omics:opportunities and challenges. Nat Rev Genet. 2020; 21 (7): 410- 27.

[14]

Xue Y , Su Z , Lin X , Ho MK , Yu KHO . Single-cell lineage tracing with endogenous markers. Biophys Rev. 2024; 16 (1): 125- 39.

[15]

Lodato MA , Woodworth MB , Lee S , Evrony GD , Mehta BK , Karger A , et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science. 2015; 350 (6256): 94- 8.

[16]

Hou Y , Song L , Zhu P , Zhang B , Tao Y , Xu X , et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell. 2012; 148 (5): 873- 85.

[17]

Navin N , Kendall J , Troge J , Andrews P , Rodgers L , McIndoo J , et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011; 472 (7341): 90- 4.

[18]

Reizel Y , Chapal-Ilani N , Adar R , Itzkovitz S , Elbaz J , Maruvka YE , et al. Colon stem cell and crypt dynamics exposed by cell lineage reconstruction. PLoS Genet. 2011; 7: e1002192.

[19]

Anderson DJ , Pauler FM , McKenna A , Shendure J , Hippenmeyer S , Horwitz MS . Simultaneous brain cell type and lineage determined by scRNA-seq reveals stereotyped cortical development. Cell Syst. 2022; 13 (6): 438- 53.e435.

[20]

Muotri AR , Chu VT , Marchetto MC , Deng W , Moran JV , Gage FH . Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature. 2005; 435 (7044): 903- 10.

[21]

Chen M , Fu R , Chen Y , Li L , Wang SW . High-resolution, noninvasive single-cell lineage tracing in mice and humans based on DNA methylation epimutations. Nat Methods. 2025; 22 (3): 488- 98.

[22]

Ludwig LS , Lareau CA , Ulirsch JC , Christian E , Muus C , Li LH , et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell. 2019; 176 (6): 1325- 39.e1322.

[23]

Xu J , Nuno K , Litzenburger UM , Qi Y , Corces MR , Majeti R , et al. Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA. eLife. 2019; 8: e45105.

[24]

Miller TE , Lareau CA , Verga JA , DePasquale EAK , Liu V , Ssozi D , et al. Mitochondrial variant enrichment from high-throughput single-cell RNA sequencing resolves clonal populations. Nat Biotechnol. 2022; 40 (7): 1030- 4.

[25]

Lareau CA , Ludwig LS , Muus C , Gohil SH , Zhao T , Chiang Z , et al. Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling. Nat Biotechnol. 2021; 39 (4): 451- 61.

[26]

Kester L , van Oudenaarden A . Single-cell transcriptomics meets lineage tracing. Cell Stem Cell. 2018; 23 (2): 166- 79.

[27]

An J , Nam CH , Kim R , Lee Y , Won H , Park S , et al. Mitochondrial DNA mosaicism in normal human somatic cells. Nat Genet. 2024; 56 (8): 1665- 77.

[28]

Zhou G , Gu Z , Xu J . Single-cell mitochondrial DNA sequencing:methodologies and applications. Mitochondrial Commun. 2024; 2: 107- 13.

[29]

Campbell P , Chapman MS , Przybilla M , Lawson A , Mitchell E , Dawson K , et al. Mitochondrial mutation, drift and selection during human development and ageing. Res Sq. Preprint (Version 1). Nat Biotechnol. 2023.

[30]

Wang X , Wang K , Zhang W , Tang Z , Zhang H , Cheng Y , et al. Clonal expansion dictates the efficacy of mitochondrial lineage tracing in single cells. Genome Biol. 2025; 26 (1): 70.

[31]

Kwok AWC , Qiao C , Huang R , Sham MH , Ho JWK , Huang Y . MQuad enables clonal substructure discovery using single cell mitochondrial variants. Nat Commun. 2022; 13 (1): 1205.

[32]

Lareau CA , Liu V , Muus C , Praktiknjo SD , Nitsch L , Kautz P , et al. Mitochondrial single-cell ATAC-seq for high-throughput multi-omic detection of mitochondrial genotypes and chromatin accessibility. Nat Protoc. 2023; 18 (5): 1416- 40.

[33]

Tang Z , Lu Z , Chen B , Zhang W , Chang HY , Hu Z , et al. A genetic bottleneck of mitochondrial DNA during human lymphocyte development. Mol Biol Evol. 2022; 39 (5): msac090.

[34]

Zhang L , Lee M , Maslov AY , Montagna C , Vijg J , Dong X . Analyzing somatic mutations by single-cell whole-genome sequencing. Nat Protoc. 2024; 19 (2): 487- 516.

[35]

Ni T , Wei G , Shen T , Han M , Lian Y , Fu H , et al. MitoRCA-seq reveals unbalanced cytocine to thymine transition in Polg mutant mice. Sci Rep. 2015; 5 (1): 12049.

[36]

Guo X , Xu W , Zhang W , Pan C , Thalacker-Mercer AE , Zheng H , et al. High-frequency and functional mitochondrial DNA mutations at the single-cell level. Proc Natl Acad Sci. 2023; 120 (1): e2201518120.

[37]

Guo X , Wang Y , Zhang R , Gu Z . STAMP: a multiplex sequencing method for simultaneous evaluation of mitochondrial DNA heteroplasmies and content. NAR Genom Bioinform. 2020; 2 (4): lqaa065.

[38]

Picelli S , Björklund ÅK , Faridani OR , Sagasser S , Winberg G , Sandberg R . Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013; 10 (11): 1096- 8.

[39]

Picelli S , Faridani OR , Björklund ÅK , Winberg G , Sagasser S , Sandberg R . Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014; 9 (1): 171- 81.

[40]

Velten L , Story BA , Hernández-Malmierca P , Raffel S , Leonce DR , Milbank J , et al. Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics. Nat Commun. 2021; 12 (1): 1366.

[41]

Bar-Yaacov D , Avital G , Levin L , Richards AL , Hachen N , Rebolledo Jaramillo B , et al. RNA-DNA differences in human mitochondria restore ancestral form of 16S ribosomal RNA. Genome Res. 2013; 23 (11): 1789- 96.

[42]

Jenuth JP , Peterson AC , Fu K , Shoubridge EA . Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet. 1996; 14 (2): 146- 51.

[43]

Wonnapinij P , Chinnery PF , Samuels DC . The distribution of mitochondrial DNA heteroplasmy due to random genetic drift. Am J Hum Genet. 2008; 83 (5): 582- 93.

[44]

Chinnery PF , Thorburn DR , Samuels DC , White SL , Dahl HM , Turnbull DM , et al. The inheritance of mitochondrial DNA heteroplasmy:random drift, selection or both? Trends Genet. 2000; 16 (11): 500- 5.

[45]

Elson JL , Samuels DC , Turnbull DM , Chinnery PF . Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet. 2001; 68 (3): 802- 6.

[46]

Stewart JB , Chinnery PF . The dynamics of mitochondrial DNA heteroplasmy:implications for human health and disease. Nat Rev Genet. 2015; 16 (9): 530- 42.

[47]

Wallace DC , Chalkia D . Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harbor Perspect Biol. 2013; 5 (11): a021220.

[48]

Wei W , Chinnery PF . Inheritance of mitochondrial DNA in humans:implications for rare and common diseases. J Intern Med. 2020; 287 (6): 634- 44.

[49]

Pikó L , Taylor KD . Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev Biol. 1987; 123 (2): 364- 74.

[50]

Dong L-F , Rohlena J , Zobalova R , Nahacka Z , Rodriguez A-M , Berridge MV , et al. Mitochondria on the move:horizontal mitochondrial transfer in disease and health. J Cell Biol. 2023; 222 (3): e202211044.

[51]

Zhang H , Yu X , Ye J , Li H , Hu J , Tan Y , et al. Systematic investigation of mitochondrial transfer between cancer cells and T cells at single-cell resolution. Cancer Cell. 2023; 41 (10): 1788- 802.e1710.

[52]

Berridge MV , Zobalova R , Boukalova S , Caicedo A , Rushworth SA , Neuzil J . Horizontal mitochondrial transfer in cancer biology:potential clinical relevance. Cancer Cell. 2025; 43 (5): 803- 7.

[53]

Ikeda H , Kawase K , Nishi T , Watanabe T , Takenaga K , Inozume T , et al. Immune evasion through mitochondrial transfer in the tumour microenvironment. Nature. 2025; 638 (8049): 225- 36.

[54]

Penter L , Cieri N , Maurer K , Kwok M , Lyu H , Lu WS , et al. Tracking rare single donor and recipient immune and leukemia cells after allogeneic hematopoietic cell transplantation using mitochondrial DNA mutations. Blood Cancer Discov. 2024; 5 (6): 442- 59.

[55]

Yu X , Hu J , Tan Y , Pan M , Zhang H , Li B . MitoTracer facilitates the identification of informative mitochondrial mutations for precise lineage reconstruction. 2023. Preprint at bioRxiv: 2023.11.22.568285.

[56]

Lin L , Zhang Y , Qian W , Liu Y , Zhang Y , Lin F , et al. LINEAGE:label-free identification of endogenous informative single-cell mitochondrial RNA mutation for lineage analysis. Proc Natl Acad Sci USA. 2022; 119 (5): e2119767119.

[57]

Nguyen LT , Schmidt HA , von Haeseler A , Minh BQ . IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015; 32 (1): 268- 74.

[58]

Kannan L , Wheeler WC . Maximum parsimony on phylogenetic networks. Algorithms Mol Biol. 2012; 7 (1): 9.

[59]

Saitou N , Nei M . The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4: 406- 25.

[60]

Paradis E , Claude J , Strimmer K . APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004; 20 (2): 289- 90.

[61]

Bouckaert R , Vaughan TG , Barido-Sottani J , Duchêne S , Fourment M , Gavryushkina A , et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2019; 15 (4): e1006650.

[62]

Wong L-JC . Challenges of bringing next generation sequencing technologies to clinical molecular diagnostic laboratories. Neurotherapeutics. 2013; 10 (2): 262- 72.

[63]

Williams CG , Lee HJ , Asatsuma T , Vento-Tormo R , Haque A . An introduction to spatial transcriptomics for biomedical research. Genome Med. 2022; 14 (1): 68.

[64]

Jones MG , Sun D , Min KHJ , Colgan WN , Tian L , Weir JA , et al. Spatiotemporal lineage tracing reveals the dynamic spatial architecture of tumor growth and metastasis. 2024. Preprint at bioRxiv: 2024.10.21.619529.

[65]

Wang K , Hou L , Wang X , Zhai X , Lu Z , Zi Z , et al. PhyloVelo enhances transcriptomic velocity field mapping using monotonically expressed genes. Nat Biotechnol. 2024; 42 (5): 778- 89.

[66]

Lange M , Piran Z , Klein M , Spanjaard B , Klein D , Junker JP , et al. Mapping lineage-traced cells across time points with moslin. Genome Biol. 2024; 25 (1): 277.

[67]

Forrow A , Schiebinger G . LineageOT is a unified framework for lineage tracing and trajectory inference. Nat Commun. 2021; 12 (1): 4940.

[68]

Wang S-W , Herriges MJ , Hurley K , Kotton DN , Klein AM . CoSpar identifies early cell fate biases from single-cell transcriptomic and lineage information. Nat Biotechnol. 2022; 40 (7): 1066- 74.

[69]

Sadria M , Zhang A , Bader GD . Deep lineage:single-cell lineage tracing and fate inference using deep learning. 2024. Preprint at bioRxiv: 2024.2004.2025.591126.

RIGHTS & PERMISSIONS

The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (1590KB)

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/