DNA methylation meets lineage tracing: History, recent progress, and future directions

Ruijiang Fu , Mengyang Chen , Shou-Wen Wang

Quant. Biol. ›› 2026, Vol. 14 ›› Issue (1) : e70017

PDF (1723KB)
Quant. Biol. ›› 2026, Vol. 14 ›› Issue (1) : e70017 DOI: 10.1002/qub2.70017
PERSPECTIVE

DNA methylation meets lineage tracing: History, recent progress, and future directions

Author information +
History +
PDF (1723KB)

Abstract

Lineage tracing techniques have been developed rapidly in the past decades by employing new genetic engineering tools. However, due to their invasive nature, these are difficult to apply to humans. Although endogenous DNA mutations can be used for in vivo lineage tracing in humans, their extremely low mutation rate presents substantial technical challenges. Epimutations on DNA methylation happen at a rate of about 0.001 per CpG site per division. Such rich and stable information enables high-resolution, noninvasive lineage tracing in humans, as recently achieved with both MethylTree and EPI-Clone. MethylTree is a computational innovation that accurately predicts cell lineages from single-cell DNA methylation data, be it genome-wide or targeted. EPI-Clone is a targeted approach that requires careful CpG panel selection for specific tissues, which has been validated in blood. In this review, we present an overview of related historical studies, discuss the development of both MethylTree and EPI-Clone, and compare these two approaches. Although EPI-Clone is more scalable and cheaper, MethylTree has a higher resolution and works directly across different tissues. We demonstrate here that MethylTree also works well with EPI-Clone data, thus providing a unified solution for epimutation-based lineage tracing. Finally, we highlight the advantages of epimutation-based lineage tracing, discuss future directions for tool development, and touch on considerations in biological applications. Epimutation-based lineage tracing opens up an exciting avenue for noninvasive lineage tracing in humans across many biological processes.

Keywords

DNA methylation / lineage tracing / single-cell multi-omics

Cite this article

Download citation ▾
Ruijiang Fu, Mengyang Chen, Shou-Wen Wang. DNA methylation meets lineage tracing: History, recent progress, and future directions. Quant. Biol., 2026, 14(1): e70017 DOI:10.1002/qub2.70017

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sulston JE , Schierenberg E , White JG , Thomson JN . The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983; 100 (1): 64- 119.

[2]

Abyzov A , Vaccarino FM . Cell lineage tracing and cellular diversity in humans. Annu Rev Genom Hum Genet. 2020; 21 (1): 101- 16.

[3]

Deng L-H , Li M-Z , Huang X-J , Zhao X-Y . Single-cell lineage tracing techniques in hematology:unraveling the cellular narrative. J Transl Med. 2025; 23 (1): 270.

[4]

Baron CS , van Oudenaarden A . Unravelling cellular relationships during development and regeneration using genetic lineage tracing. Nat Rev Mol Cell Biol. 2019; 20 (12): 753- 65.

[5]

Chen C , Liao Y , Peng G . Connecting past and present:single-cell lineage tracing. Protein Cell. 2022; 13 (11): 790- 807.

[6]

Wagner DE , Klein AM . Lineage tracing meets single-cell omics:opportunities and challenges. Nat Rev Genet. 2020; 21 (7): 410- 27.

[7]

Li L , Bowling S , McGeary SE , Yu Q , Lemke B , Alcedo K , et al. A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells. Cell. 2023; 186 (23): 5183- 99.

[8]

Li L , Bowling S , Lin H , Chen D , Wang SW , Camargo FD . DARLIN mouse for in vivo lineage tracing at high efficiency and clonal diversity. Nat Protoc. 2025; 1- 26.

[9]

Wang S-W , Herriges MJ , Hurley K , Kotton DN , Klein AM . CoSpar identifies early cell fate biases from single-cell transcriptomic and lineage information. Nat Biotechnol. 2022; 40 (7): 1066- 74.

[10]

Wang K , Hou L , Wang X , Zhai X , Lu Z , Zi Z , et al. PhyloVelo enhances transcriptomic velocity field mapping using monotonically expressed genes. Nat Biotechnol. 2024; 42 (5): 778- 89.

[11]

Bae T , Tomasini L , Mariani J , Zhou B , Roychowdhury T , Franjic D , et al. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science. 2018; 359 (6375): 550- 5.

[12]

Milholland B , Dong X , Zhang L , Hao X , Suh Y , Vijg J . Differences between germline and somatic mutation rates in humans and mice. Nat Commun. 2017; 8 (1): 15183.

[13]

Dong X , Zhang L , Milholland B , Lee M , Maslov AY , Wang T , et al. Accurate identification of single-nucleotide variants in whole-genome-amplified single cells. Nat Methods. 2017; 14 (5): 491- 3.

[14]

Fabre MA , de Almeida JG , Fiorillo E , Mitchell E , Damaskou A , Rak J , et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature. 2022; 606 (7913): 335- 42.

[15]

Mitchell E , Spencer Chapman M , Williams N , Dawson KJ , Mende N , Calderbank EF , et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature. 2022; 606 (7913): 343- 50.

[16]

Ludwig LS , Lareau CA , Ulirsch JC , Christian E , Muus C , Li LH , et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell. 2019; 176 (6): 1325- 39.e22.

[17]

Scherer M , Singh I , Braun MM , Szu-Tu C , Sanchez Sanchez P , Lindenhofer D , et al. Clonal tracing with somatic epimutations reveals dynamics of blood ageing. Nature. 2025; 643 (8071): 478- 87.

[18]

Campbell P , Chapman MS , Przybilla M , Lawson A , Mitchell E , Dawson K , et al. Mitochondrial mutation, drift and selection during human development and ageing. 2023. Preprint at Research Square:10.21203/rs.3.rs-3083262/v1.

[19]

Wang X , Wang K , Zhang W , Tang Z , Zhang H , Cheng Y , et al. Clonal expansion dictates the efficacy of mitochondrial lineage tracing in single cells. Genome Biol. 2025; 26 (1): 70.

[20]

Lareau CA , Chapman MS , Penter L , Nawy T , Pe'er D , Ludwig LS . Artifacts in single-cell mitochondrial DNA mutation analyses misinform phylogenetic inference. 2024. Preprint at bioRxiv: 2024.07. 28.605517.

[21]

Kelsey G , Stegle O , Reik W . Single-cell epigenomics:recording the past and predicting the future. Science. 2017; 358 (6359): 69- 75.

[22]

Lister R , Pelizzola M , Dowen R , Hawkins RD , Hon G , Tonti-Filippini J , et al. Human, DNA methylomes at base resolution show widespread epige nomic differences. Nature. 2009; 462 (7271): 315- 22.

[23]

Li E , Bestor TH , Jaenisch R . Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992; 69 (6): 915- 26.

[24]

Jackson-Grusby L , Beard C , Possemato R , Tudor M , Fambrough D , Csankovszki G , et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet. 2001; 27 (1): 31- 9.

[25]

Lyko F . The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018; 19 (2): 81- 92.

[26]

Tahiliani M , Koh KP , Shen Y , Pastor WA , Bandukwala H , Brudno Y , et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009; 324 (5929): 930- 5.

[27]

Ito S , Shen L , Dai Q , Wu SC , Collins LB , Swenberg JA , et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011; 333 (6047): 1300- 3.

[28]

Ushijima T , Watanabe N , Okochi E , Kaneda A , Sugimura T , Miyamoto K . Fidelity of the methylation pattern and its variation in the genome. Genome Res. 2003; 13 (5): 868- 74.

[29]

Ushijima T , Watanabe N , Shimizu K , Miyamoto K , Sugimura T , Kaneda A . Decreased fidelity in replicating CpG methylation patterns in cancer cells. Cancer Res. 2005; 65 (1): 11- 7.

[30]

Yatabe Y , Tavaré S , Shibata D . Investigating stem cells in human colon by using methylation patterns. Proc. Natl. Acad. Sci. U.S.A. 2001; 98 (19): 10839- 44.

[31]

Kim K-M , Shibata D . Methylation reveals a niche:stem cell succession in human colon crypts. Oncogene. 2002; 21 (35): 5441- 9.

[32]

Kim K-M , Shibata D . Tracing ancestry with methylation patterns:most crypts appear distantly related in normal adult human colon. BMC Gastroenterol. 2004; 4: 1- 10.

[33]

Nicolas P , Kim K-M , Shibata D , Tavaré S . The stem cell population of the human colon crypt: analysis via methylation patterns. PLoS Comput Biol. 2007; 3: e28.

[34]

Graham TA , Humphries A , Sanders T , Rodriguez-Justo M , Tadrous PJ , Preston SL , et al. Use of methylation patterns to determine expansion of stem cell clones in human colon tissue. Gastroenterology. 2011; 140 (4): 1241- 50.e9.

[35]

Gabbutt C , Schenck RO , Weisenberger DJ , Kimberley C , Berner A , Househam J , et al. Fluctuating methylation clocks for cell lineage tracing at high temporal resolution in human tissues. Nat Biotechnol. 2022; 40 (5): 720- 30.

[36]

Fearon ER , Bommer GT . Ancestries hidden in plain sight:methylation patterns for clonal analysis. Gastroenterology. 2011; 140 (4): 1139- 43.

[37]

Brocks D , Assenov Y , Minner S , Bogatyrova O , Simon R , Koop C , et al. Intratumor DNA methylation heterogeneity reflects clonal evolution in aggressive prostate cancer. Cell Rep. 2014; 8 (3): 798- 806.

[38]

Mazor T , Pankov A , Johnson B , Hong C , Hamilton E , Bell R , et al. DNA methylation and somatic mutations converge on the cell cycle and define similar evolutionary histories in brain tumors. Cancer Cell. 2015; 28 (3): 307- 17.

[39]

Bian S , Hou Y , Zhou X , Li X , Yong J , Wang Y , et al. Single-cell multiomics sequencing and analyses of human colorectal cancer. Science. 2018; 362 (6418): 1060- 3.

[40]

Bian S , Wang Y , Zhou Y , Wang W , Guo L , Wen L , et al. Integrative single-cell multiomics analyses dissect molecular signatures of intratumoral heterogeneities and differentiation states of human gastric cancer. Natl Sci Rev. 2023; 10 (6): nwad094.

[41]

Wang Y , Xie H , Chang X , Hu W , Li M , Li Y , et al. Single-cell dissection of the multiomic landscape of high-grade serous ovarian cancer. Cancer Res. 2022; 82 (21): 3903- 16.

[42]

Gaiti F , Chaligne R , Gu H , Brand RM , Kothen-Hill S , Schulman RC , et al. Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia. Nature. 2019; 569 (7757): 576- 80.

[43]

Chaligne R , Gaiti F , Silverbush D , Schiffman JS , Weisman HR , Kluegel L , et al. Epigenetic encoding, heritability and plasticity of glioma transcriptional cell states. Nat Genet. 2021; 53 (10): 1469- 79.

[44]

Mooijman D , Dey SS , Boisset J-C , Crosetto N , Van Oudenaarden A . Single-cell 5hmC sequencing reveals chromosome-wide cell-to-cell variability and enables lineage reconstruction. Nat Biotechnol. 2016; 34 (8): 852- 6.

[45]

Zhu P , Guo H , Ren Y , Hou Y , Dong J , Li R , et al. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat Genet. 2018; 50 (1): 12- 9.

[46]

Wang Y , Yuan P , Yan Z , Yang M , Huo Y , Nie Y , et al. Single-cell multiomics sequencing reveals the functional regulatory landscape of early embryos. Nat Commun. 2021; 12 (1): 1247.

[47]

Yao N , Zhang Z , Yu L , Hazarika R , Yu C , Jang H , et al. An evolutionary epigenetic clock in plants. Science. 2023; 381 (6665): 1440- 5.

[48]

Clark SJ , Smallwood SA , Lee HJ , Krueger F , Reik W , Kelsey G . Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat Protoc. 2017; 12 (3): 534- 47.

[49]

Vaisvila R , Ponnaluri VC , Sun Z , Langhorst BW , Saleh L , Guan S , et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res. 2021; 31 (7): 1280- 9.

[50]

Luo C , Keown CL , Kurihara L , Zhou J , He Y , Li J , et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science. 2017; 357 (6351): 600- 4.

[51]

Loyfer N , Magenheim J , Peretz A , Cann G , Bredno J , Klochendler A , et al. A DNA methylation atlas of normal human cell types. Nature. 2023; 613 (7943): 355- 64.

[52]

Cao Y , Bai Y , Yuan T , Song L , Fan Y , Ren L , et al. Single-cell bisulfite-free 5mC and 5hmC sequencing with high sensitivity and scalability. Proc. Proc. Natl. Acad. Sci. U.S.A. 2023; 120 (49): e2310367120.

[53]

Guo H , Zhu P , Yan L , Li R , Hu B , Lian Y , et al. The DNA methylation landscape of human early embryos. Nature. 2014; 511 (7511): 606- 10.

[54]

Smith ZD , Chan MM , Humm KC , Karnik R , Mekhoubad S , Regev A , et al. DNA methylation dynamics of the human preimplantation embryo. Nature. 2014; 511 (7511): 611- 5.

[55]

Smith ZD , Chan MM , Mikkelsen TS , Gu H , Gnirke A , Regev A , et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature. 2012; 484 (7394): 339- 44.

[56]

Chen M , Fu R , Chen Y , Li L , Wang S-W . High-resolution, noninvasive single-cell lineage tracing in mice and humans based on DNA methylation epimutations. Nat Methods. 2025; 1- 11.

[57]

Wang SW . MethylTree:exploring epimutations for accurate and non-invasive lineage tracing. Nat Methods. 2025; 22 (3): 463- 4.

[58]

Bianchi A , Scherer M , Zaurin R , Quililan K , Velten L , Beekman R . scTAM-seq enables targeted high-confidence analysis of DNA methylation in single cells. Genome Biol. 2022; 23 (1): 229.

[59]

Zhou J , Wu Y , Liu H , Tian W , Castanon RG , Bartlett A , et al. Human body single-cell Atlas of 3D genome organization and DNA methylation. 2025. Preprint at bioRxiv: 2025.03.23.644697.

[60]

Bai D , Zhang X , Xiang H , Guo Z , Zhu C , Yi C . Simultaneous single-cell analysis of 5mC and 5hmC with SIMPLE-seq. Nat Biotechnol. 2025; 43 (1): 85- 96.

[61]

Bai Y , Yuan T , Ren L , Huan Y , Yang F , Li Y , et al. Single-cell characterization of DNA hydroxymethylation of the mouse brain during aging. 2025. Preprint at bioRxiv: 2025.05. 29.656780.

[62]

Luo C , Liu H , Xie F , Armand EJ , Siletti K , Bakken TE , et al. Single nucleus multi-omics identifies human cortical cell regulatory genome diversity. Cell Genom. 2022; 2 (3): 100107.

RIGHTS & PERMISSIONS

The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (1723KB)

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/