A comprehensive review of cluster methods for drug-drug interaction network

Shuyuan Cao , Guixia Liu , Xiangrun Zhou , Ji Lv

Quant. Biol. ›› 2026, Vol. 14 ›› Issue (1) : e70015

PDF (949KB)
Quant. Biol. ›› 2026, Vol. 14 ›› Issue (1) : e70015 DOI: 10.1002/qub2.70015
REVIEW ARTICLE

A comprehensive review of cluster methods for drug-drug interaction network

Author information +
History +
PDF (949KB)

Abstract

The detection of drug-drug interaction (DDI) is crucial to the rational use of drug combinations. Experimentally, DDI detection is time-consuming and laborious. Currently, researchers have developed a variety of computational methods to predict DDI. Although there are many reviews that summarized these computational methods, these reviews focused on supervised learning. In this review, we provide a comprehensive and systematic summary of unsupervised (i.e., clustering) methods for DDI network analysis. Unlike previous studies, we highlight the unique advantages of clustering methods DDI prediction and uncovering mechanisms of action. We first introduced common drug information and discussed how to calculate drug similarity using this drug information. Then, we introduced representative clustering algorithms (i.e., drug information-based and network-based methods) and described clustering evaluation metrics. Finally, we discussed the limitations and challenges in this field, and proposed potential research directions. This review aims to promote further exploration and application of clustering methods in drug combination discovery and DDI network analysis.

Keywords

clustering / drug combinations / drug similarity / drug-drug interaction

Cite this article

Download citation ▾
Shuyuan Cao, Guixia Liu, Xiangrun Zhou, Ji Lv. A comprehensive review of cluster methods for drug-drug interaction network. Quant. Biol., 2026, 14(1): e70015 DOI:10.1002/qub2.70015

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lv J , Deng S , Zhang L . A review of artificial intelligence applications for antimicrobial resistance. Biosaf Health. 2021; 3 (1): 22- 31.

[2]

Lehár J , Krueger AS , Avery W , Heilbut AM , Johansen LM , Price ER , et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol. 2009; 27 (7): 659- 66.

[3]

Ramsay RR , Popovic-Nikolic MR , Nikolic K , Uliassi E , Bolognesi ML . A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med. 2018; 7 (1): 3.

[4]

Lv J , Liu G , Hao J , Ju Y , Sun B , Sun Y . Computational models, databases and tools for antibiotic combinations. Briefings Bioinf. 2022; 23 (5): bbac309.

[5]

Tyers M , Wright GD . Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol. 2019; 17 (3): 141- 55.

[6]

Lv J , Liu G , Ju Y , Huang H , Sun Y . AADB: a manually collected database for combinations of antibiotics with adjuvants. IEEE ACM Trans Comput Biol Bioinf. 2023; 20 (5): 2827- 36.

[7]

Lv J , Liu G , Dong W , Ju Y , Sun Y . ACDB: an antibiotic combination database. Front Pharmacol. 2022; 13: 869983.

[8]

Nichols RJ , Sen S , Choo YJ , Beltrao P , Zietek M , Chaba R , et al. Phenotypic landscape of a bacterial cell. Cell. 2011; 144 (1): 143- 56.

[9]

Chandrasekaran S , Cokol-Cakmak M , Sahin N , Yilancioglu K , Kazan H , Collins JJ , et al. Chemogenomics and orthology-based design of antibiotic combination therapies. Mol Syst Biol. 2016; 12 (5): 872.

[10]

Cokol M , Li C , Chandrasekaran S . Chemogenomic model identifies synergistic drug combinations robust to the pathogen microenvironment. PLoS Comput Biol. 2018; 14 (12): e1006677.

[11]

Mason DJ , Stott I , Ashenden S , Weinstein ZB , Karakoc I , Meral S , et al. Prediction of antibiotic interactions using descriptors derived from molecular structure. J Med Chem. 2017; 60 (9): 3902- 12.

[12]

Zagidullin B , Wang Z , Guan Y , Pitkänen E , Tang J . Comparative analysis of molecular fingerprints in prediction of drug combination effects. Briefings Bioinf. 2021; 22 (6): bbab291.

[13]

Duvenaud DK , Maclaurin D , Aguilera-Iparraguirre J , Gómez-Bombarelli R , Hirzel T , Aspuru-Guzik A , et al. Convolutional networks on graphs for learning molecular fingerprints. Adv Neural Inf Process Syst. 2015; 28: 2224- 32.

[14]

Xiong Z , Wang D , Liu X , Zhong F , Wan X , Li X , et al. Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. J Med Chem. 2020; 63 (16): 8749- 60.

[15]

Liao Q , Zhang Y , Chu Y , Ding Y , Liu Z , Zhao X , et al. Application of artificial intelligence in drug-target interactions prediction: a review. npj Biomed Innov. 2025; 2 (1): 1.

[16]

Preuer K , Lewis RPI , Hochreiter S , Bender A , Bulusu KC , Klambauer G . DeepSynergy:predicting anti-cancer drug synergy with deep learning. Bioinformatics. 2017; 34 (9): 1538- 46.

[17]

Zhang W , Chen Y , Liu F , Luo F , Tian G , Li X . Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinf. 2017; 18 (1): 18.

[18]

Deng Y , Xu X , Qiu Y , Xia J , Zhang W , Liu S . A multimodal deep learning framework for predicting drug-drug interaction events. Bioinformatics. 2020; 36 (15): 4316- 22.

[19]

Qiu Y , Zhang Y , Deng Y , Liu S , Zhang W . A comprehensive review of computational methods for drug-drug interaction detection. IEEE ACM Trans Comput Biol Bioinf. 2022; 19 (4): 1968- 85.

[20]

Zhao Y , Yin J , Zhang L , Zhang Y , Chen X . Drug-drug interaction prediction:databases, web servers and computational models. Briefings Bioinf. 2023; 25 (1): bbad445.

[21]

Lin X , Dai L , Zhou Y , Yu ZG , Zhang W , Shi JY , et al. Comprehensive evaluation of deep and graph learning on drug-drug interactions prediction. Briefings Bioinf. 2023; 24 (4): bbad235.

[22]

Li X , Xiong Z , Zhang W , Liu S . Deep learning for drug-drug interaction prediction: a comprehensive review. Quant Biol. 2024; 12 (1): 30- 52.

[23]

Lv J , Liu G , Ju Y , Sun B , Huang H , Sun Y . Integrating multi-source drug information to cluster drug-drug interaction network. Comput Biol Med. 2023; 162: 107088.

[24]

Lv J , Liu G , Ju Y , Huang H , Sun Y . Measuring drug similarity using drug-drug interactions. Quant Biol. 2024; 12 (2): 164- 72.

[25]

Lv J , Liu G , Ju Y , Huang H , Sun Y . Identification of robust antibiotic subgroups by integrating multi-species drug-drug interactions. J Chem Inf Model. 2023; 63 (15): 4970- 8.

[26]

Udrescu L , Sbârcea L , Topîrceanu A , Iovanovici A , Kurunczi L , Bogdan P , et al. Clustering drug-drug interaction networks with energy model layouts:community analysis and drug repurposing. Sci Rep. 2016; 6 (1): 32745.

[27]

Huang L , Luo H , Li S , Wu F , Wang J . Drug-drug similarity measure and its applications. Briefings Bioinf. 2020; 22 (4): bbaa265.

[28]

Borisy AA , Elliott PJ , Hurst NW , Lee MS , Lehár J , Price ER , et al. Systematic discovery of multicomponent therapeutics. Proc Natl Acad Sci. 2003; 100 (13): 7977- 82.

[29]

Yeh P , Tschumi AI , Kishony R . Functional classification of drugs by properties of their pairwise interactions. Nat Genet. 2006; 38 (4): 489- 94.

[30]

Brochado AR , Telzerow A , Bobonis J , Banzhaf M , Mateus A , Selkrig J , et al. Species-specific activity of antibacterial drug combinations. Nature. 2018; 559 (7713): 259- 63.

[31]

Tekin E , White C , Kang TM , Singh N , Cruz-Loya M , Damoiseaux R , et al. Prevalence and patterns of higher-order drug interactions in Escherichia coli. npj Syst Biol Appl. 2018; 4 (1): 31.

[32]

Sun B , Lv J , Chen J , Liu Z , Zhou Y , Liu L , et al. Size-selective VAILase proteolysis provides dynamic insights into protein structures. Anal Chem. 2021; 93 (30): 10653- 60.

[33]

Mateus A , Hevler J , Bobonis J , Kurzawa N , Shah M , Mitosch K , et al. The functional proteome landscape of Escherichia coli. Nature. 2020; 588 (7838): 473- 8.

[34]

Kim S , Chen J , Cheng T , Gindulyte A , He J , He S , et al. PubChem in 2021:new data content and improved web interfaces. Nucleic Acids Res. 2020; 49 (D1): D1388- 95.

[35]

Knox C , Wilson M , Klinger C , Franklin M , Oler E , Wilson A , et al. DrugBank 6.0:the DrugBank knowledgebase for 2024. Nucleic Acids Res. 2024; 52 (D1): D1265- 75.

[36]

Mendez D , Gaulton A , Bento AP , Chambers J , De Veij M , Félix E , et al. ChEMBL:towards direct deposition of bioassay data. Nucleic Acids Res. 2018; 47 (D1): D930- 40.

[37]

Fuhrer T , Zampieri M , Sévin DC , Sauer U , Zamboni N . Genomewide landscape of gene-metabolome associations in Escherichia coli. Mol Syst Biol. 2017; 13 (1): 907.

[38]

Anglada-Girotto M , Handschin G , Ortmayr K , Campos AI , Gillet L , Manfredi P , et al. Combining CRISPRi and metabolomics for functional annotation of compound libraries. Nat Chem Biol. 2022; 18 (5): 482- 91.

[39]

Campos AI , Zampieri M . Metabolomics-driven exploration of the chemical drug space to predict combination antimicrobial therapies. Mol Cell. 2019; 74 (6): 1291- 303.e6.

[40]

Szklarczyk D , Kirsch R , Koutrouli M , Nastou K , Mehryary F , Hachilif R , et al. The STRING database in 2023:protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2022; 51 (D1): D638- 46.

[41]

Cheng F , Kovács IA , Barabási A-L . Network-based prediction of drug combinations. Nat Commun. 2019; 10 (1): 1197.

[42]

Lv J , Liu G , Ju Y , Sun Y , Guo W . Prediction of synergistic antibiotic combinations by graph learning. Front Pharmacol. 2022; 13: 849006.

[43]

Otoupal PB , Eller KA , Erickson KE , Campos J , Aunins TR , Chatterjee A . Potentiating antibiotic efficacy via perturbation of non-essential gene expression. Commun Biol. 2021; 4 (1): 1267.

[44]

Wu G , Liu J , Wang C . Predicting drug-disease interactions by semi-supervised graph cut algorithm and three-layer data integration. BMC Med Genom. 2017; 10 (5): 79.

[45]

Liu H , Sun J , Guan J , Zheng J , Zhou S . Improving compound-protein interaction prediction by building up highly credible negative samples. Bioinformatics. 2015; 31 (12): i221- 9.

[46]

Pattanaik L , Coley CW . Molecular representation:going long on fingerprints. Chem. 2020; 6 (6): 1204- 7.

[47]

Axen SD , Huang XP , Cáceres EL , Gendelev L , Roth BL , Keiser MJ . A simple representation of three-dimensional molecular structure. J Med Chem. 2017; 60 (17): 7393- 409.

[48]

Wishart DS , Knox C , Guo AC , Cheng D , Shrivastava S , Tzur D , et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2007; 36 (Suppl_1): D901- 6.

[49]

Ishak A , Mazonakis N , Spernovasilis N , Akinosoglou K , Tsioutis C . Bactericidal versus bacteriostatic antibacterials:clinical significance, differences and synergistic potential in clinical practice. J Antimicrob Chemother. 2024; 80 (1): 1- 17.

[50]

Dunkel M , Gunther S , Ahmed J , Wittig B , Preissner R . SuperPred:drug classification and target prediction. Nucleic Acids Res. 2008; 36 (Suppl_2): W55- 9.

[51]

Newman M . Networks. Oxford University Press; 2018.

[52]

Duran-Frigola M , Pauls E , Guitart-Pla O , Bertoni M , Alcalde V , Amat D , et al. Extending the small-molecule similarity principle to all levels of biology with the chemical checker. Nat Biotechnol. 2020; 38 (9): 1087- 96.

[53]

Cheng F , Li W , Wu Z , Wang X , Zhang C , Li J , et al. Prediction of polypharmacological profiles of drugs by the integration of chemical, side effect, and therapeutic space. J Chem Inf Model. 2013; 53 (4): 753- 62.

[54]

Yilancioglu K , Weinstein ZB , Meydan C , Akhmetov A , Toprak I , Durmaz A , et al. Target-independent prediction of drug synergies using only drug lipophilicity. J Chem Inf Model. 2014; 54 (8): 2286- 93.

[55]

Ocampo PS , Lázár V , Papp B , Arnoldini M , Abel zur Wiesch P , Busa-Fekete R , et al. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob Agents Chemother. 2014; 58 (8): 4573- 82.

[56]

Guimerà R , Sales-Pardo M . A network inference method for large-scale unsupervised identification of novel drug-drug interactions. PLoS Comput Biol. 2013; 9 (12): e1003374.

[57]

Piccaro G , Poce G , Biava M , Giannoni F , Fattorini L . Activity of lipophilic and hydrophilic drugs against dormant and replicating Mycobacterium tuberculosis. J Antibiot. 2015; 68 (11): 711- 4.

[58]

Béahdy J . Recent developments of antibiotic research and classification of antibiotics according to chemical structure. In:Perlman D, editor. Advances in applied microbiology. Academic Press; 1974. p. 309- 406.

[59]

Giamarellou H . Aminoglycosides plus beta-lactams against gram-negative organisms:evaluation of in vitro synergy and chemical interactions. Am J Med. 1986; 80 (6): 126- 37.

[60]

Johnston CW , Skinnider MA , Dejong CA , Rees PN , Chen GM , Walker CG , et al. Assembly and clustering of natural antibiotics guides target identification. Nat Chem Biol. 2016; 12 (4): 233- 9.

[61]

Marcus R , Paul M , Elphick H , Leibovici L . Clinical implications of β-lactam-aminoglycoside synergism:systematic review of randomised trials. Int J Antimicrob Agents. 2011; 37 (6): 491- 503.

[62]

Nemeth J , Oesch G , Kuster SP . Bacteriostatic versus bactericidal antibiotics for patients with serious bacterial infections:systematic review and meta-analysis. J Antimicrob Chemother. 2014; 70 (2): 382- 95.

[63]

Song LY , D'Souza S , Lam K , Kang TM , Yeh P , Miller JH . Exploring synergy between classic mutagens and antibiotics to examine mechanisms of synergy and antibiotic action. Antimicrob Agents Chemother. 2016; 60 (3): 1515- 20.

[64]

Nguyen C , Zhou A , Khan A , Miller JH , Yeh P . Pairwise antibiotic interactions in Escherichia coli:Triclosan, rifampicin and aztreonam with nine other classes of antibiotics. J Antibiot. 2016; 69 (11): 791- 7.

[65]

Bair E . Semi-supervised clustering methods. WIREs Comput Stat. 2013; 5 (5): 349- 61.

[66]

Wu R , Wang H , Chen H , Carneiro G . Deep multimodal learning with missing modality: a survey. 2024. Preprint at arXiv: 2409.07825.

[67]

Liu Y , Liang K , Xia J , Yang X , Zhou S , Liu M , et al. Reinforcement graph clustering with unknown cluster number; 2023. p. 3528- 37.

[68]

Das P , Delost MD , Qureshi MH , Smith DT , Njardarson JT . A survey of the structures of US FDA approved combination drugs. J Med Chem. 2019; 62 (9): 4265- 311.

[69]

Gao Y , Zhang Z , Lin H , Zhao X , Du S , Zou C . Hypergraph learning:methods and practices. IEEE Trans Pattern Anal Mach Intell. 2022; 44 (5): 2548- 66.

[70]

Liu X , Song C , Liu S , Li M , Zhou X , Zhang W . Multi-way relation-enhanced hypergraph representation learning for anti-cancer drug synergy prediction. Bioinformatics. 2022; 38 (20): 4782- 9.

RIGHTS & PERMISSIONS

The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (949KB)

86

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/