PDF
(6440KB)
Abstract
Cancer is a complex and heterogeneous disease characterized by various genetic and epigenetic alterations. Early diagnosis, accurate subtyping, and staging are essential for effective, personalized treatment and improved survival rates. Traditional diagnostic methods, such as biopsies, are invasive and carry operational risks that hinder repeated use, underscoring the need for noninvasive and personalized alternatives. In response, this study integrates transcriptomic data into human genome-scale metabolic models (GSMMs) to derive patient-specific flux distributions, which are then combined with genomic, proteomic, and fluxomic (JX) data to develop a robust multi-omic classifier for lung cancer subtyping and early diagnosis. The JX classifier is further enhanced by analyzing heterogeneous datasets from RNA sequencing and microarray analyses derived from both tissue samples and cell culture experiments, thereby enabling the identification of key marker features and enriched pathways such as lipid metabolism and energy production. This integrated approach not only demonstrates high performance in distinguishing lung cancer subtypes and early-stage disease but also proves robust when applied to limited pancreatic cancer data. By linking genotype to phenotype, GSMM-driven flux analysis overcomes challenges related to metabolome data scarcity and platform variability by proposing marker processes and reactions for further investigation, ultimately facilitating noninvasive diagnostics and the identification of actionable biomarkers for targeted therapeutic intervention. These findings offer significant promise for streamlining clinical workflows and enabling personalized therapeutic strategies, and they highlight the potential of our versatile workflow for unveiling novel biomarker landscapes in less studied diseases.
Keywords
genome scale metabolic model
/
lung cancer
/
machine learning
/
marker pathway enrichment
/
multi omics data classification
/
pancreatic cancer
Cite this article
Download citation ▾
Ezgi Tanıl, Emrah Nikerel.
Multi-omic data integration and exploiting metabolic models using systems biology approach increase precision in subtyping and early diagnosis of cancer.
Quant. Biol., 2025, 13(4): e70012 DOI:10.1002/qub2.70012
| [1] |
Surveillance, Epidemiology, and End Results (SEER) Program. Cancer stat facts: lung and bronchus cancer. National Cancer Institute.
|
| [2] |
Callejón-Leblic B, García-Barrera T, Grávalos-Guzmán J, Pereira-Vega A, Gómez-Ariza JL. Metabolic profiling of potential lung cancer biomarkers using bronchoalveolar lavage fluid and the integrated direct infusion/gas chromatography mass spectrometry platform. J Proteonomics. 2016; 145: 197- 206.
|
| [3] |
Surveillance, Epidemiology, and End Results (SEER) Program. Cancer Stat Facts:Pancreatic Cancer. National Cancer Institute.
|
| [4] |
Zhang L, Sanagapalli S, Stoita A. Challenges in diagnosis of pancreatic cancer. World J Gastroenterol. 2018; 24 (19): 2047- 60.
|
| [5] |
Li J, Guan X, Fan Z, Ching LM, Li Y, Wang X, et al. Non-invasive biomarkers for early detection of breast cancer. Cancers. 2020; 12 (10): 2767.
|
| [6] |
Patriotis C, Srivastava S. Early cancer detection: challenges and opportunities. In: Circulating tumor cell advances in liquid biopsy technologies. Springer; 2023. p. 619- 31.
|
| [7] |
Wang W, Rong Z, Wang G, Hou Y, Yang F, Qiu M. Cancer metabolites: promising biomarkers for cancer liquid biopsy. Biomark Res. 2023; 11 (1): 66.
|
| [8] |
Wang W, Zhen S, Ping Y, Wang L, Zhang Y. Metabolomic biomarkers in liquid biopsy: accurate cancer diagnosis and prognosis monitoring. Front Oncol. 2024; 14: 1331215.
|
| [9] |
Yazdi ZF, Roshannezhad S, Sharif S, Abbaszadegan MR. Recent progress in prompt molecular detection of liquid biopsy using Cas enzymes: innovative approaches for cancer diagnosis and analysis. J Transl Med. 2024; 22 (1): 1173.
|
| [10] |
Cai Z, Xu D, Zhang Q, Zhang J, Ngai SM, Shao J. Classification of lung cancer using ensemble-based feature selection and machine learning methods. Mol Biosyst. 2015; 11 (3): 791- 800.
|
| [11] |
Chan BA, Hughes BGM. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res. 2015; 4: 36.
|
| [12] |
Podolsky MD, Barchuk AA, Kuznetcov VI, Gusarova NF, Gaidukov VS, Tarakanov SA. Evaluation of machine learning algorithm utilization for lung cancer classification based on gene expression levels. Asian Pac J Cancer Prev APJCP. 2016; 17 (2): 835- 8.
|
| [13] |
Wikoff WR, Grapov D, Fahrmann JF, DeFelice B, Rom WN, Pass HI, et al. Metabolomic markers of altered nucleotide metabolism in early stage adenocarcinoma. Cancer Prev Res. 2015; 8 (5): 410- 8.
|
| [14] |
Moreno P, Jiménez-Jiménez C, Garrido-Rodríguez M, Calderón-Santiago M, Molina S, Lara-Chica M, et al. Metabolomic profiling of human lung tumor tissues -nucleotide metabolism as a candidate for therapeutic interventions and biomarkers. Mol Oncol. 2018; 12 (10): 1778- 96.
|
| [15] |
Bauml J, Levy B. Clonal hematopoiesis: a new layer in the liquid biopsy story in lung cancer. Clin Cancer Res. 2018; 24 (18): 4352- 4.
|
| [16] |
Robert NJ, Nwokeji ED, Espirito JL, Chen L, Karhade M, Evangelist MC, et al. Biomarker tissue journey among patients (pts) with untreated metastatic non-small cell lung cancer (mNSCLC) in the U.S. Oncology Network community practices. J Clin Oncol. 2021; 39 (15_suppl): 9004.
|
| [17] |
Ho HY, Chung KS, Kan CM, Wong SC. Liquid biopsy in the clinical management of cancers. Int J Mol Sci. 2024; 25 (16): 8594.
|
| [18] |
Buono M, Russo G, Nardone V, Della Corte CM, Natale G, Rubini D, et al. New perspectives on inoperable early-stage lung cancer management: clinicians, physicists, and biologists unveil strategies and insights. J Liq Biopsy. 2024; 5: 100153.
|
| [19] |
Chen Y, Ma Z, Min L, Li H, Wang B, Zhong J, et al. Biomarker identification and pathway analysis by serum metabolomics of lung cancer. BioMed Res Int. 2015; 2015: 1- 9.
|
| [20] |
Li S, Looby N, Chandran V, Kulasingam V. Challenges in the metabolomics-based biomarker validation pipeline. Metabolites. 2024; 14 (4): 200.
|
| [21] |
Nguyen Q. -H, Nguyen H, Oh EC, Nguyen T. Current approaches and outstanding challenges of functional annotation of metabolites: a comprehensive review. Briefings Bioinf. 2024; 25 (6): bbae498.
|
| [22] |
Eicher T, Kinnebrew G, Patt A, Spencer K, Ying K, Ma Q, et al. Metabolomics and multi-omics integration: a survey of computational methods and Resources. Metabolites. 2020; 10 (5): 202.
|
| [23] |
Hernández-Lemus E, Ochoa S. Methods for multi-omic data integration in cancer research. Front Genet. 2024; 15: 1425456.
|
| [24] |
Hou J, Aerts J, den Hamer B, van IJcken W, den Bakker M, Riegman P, et al. Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PLoS One. 2010; 5 (4): e10312.
|
| [25] |
Xie Y, Meng WY, Li RZ, Wang YW, Qian X, Chan C, et al. Early lung cancer diagnostic biomarker discovery by machine learning methods. Transl Oncol. 2021; 14 (1): 100907.
|
| [26] |
Sherafatian M, Arjmand F. Decision tree-based classifiers for lung cancer diagnosis and subtyping using TCGA miRNA expression data. Oncol Lett. 2019; 18: 2125- 31.
|
| [27] |
Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, Mcewen R, et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 2016; 44 (11): 1- 11.
|
| [28] |
Lewis JE, Forshaw TE, Boothman DA, Furdui CM, Kemp ML. Personalized genome-scale metabolic models identify targets of redox metabolism in radiation-resistant tumors. Cell Syst. 2021; 12 (1): 68- 81.e11.
|
| [29] |
Lewis JE, Kemp ML. Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance. Nat Commun. 2021; 12 (1): 2700.
|
| [30] |
Warburg O. On the origin of cancer cells. Science. 1956; 123 (3191): 309- 14.
|
| [31] |
Ghaffari P, Mardinoglu A, Nielsen J. Cancer metabolism: a modeling perspective. Front Physiol. 2015; 6: 382.
|
| [32] |
Gudmundsson S, Thiele I. Computationally efficient flux variability analysis. BMC Bioinf. 2010; 11 (1): 2- 4.
|
| [33] |
Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol. 2010; 6 (1): 390.
|
| [34] |
Kuepfer L, Sauer U, Blank LM. Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 2005; 15 (10): 1421- 30.
|
| [35] |
Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, Farhat MR, et al. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol. 2009; 5 (8): e1000489.
|
| [36] |
Lee D, Smallbone K, Dunn WB, Murabito E, Winder CL, Kell DB, et al. Improving metabolic flux predictions using absolute gene expression data. BMC Syst Biol. 2012; 6 (1): 73.
|
| [37] |
Becker SA, Palsson BO. Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol. 2008; 4 (5): e1000082.
|
| [38] |
Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol. 2012; 8 (5): e1002518.
|
| [39] |
Zur H, Ruppin E, Shlomi T. iMAT: an integrative metabolic analysis tool. Bioinformatics. 2010; 26 (24): 3140- 2.
|
| [40] |
Reed JL. Shrinking the metabolic solution space using experimental datasets. PLoS Comput Biol. 2012; 8: e1002662.
|
| [41] |
Schmidt BJ, Ebrahim A, Metz TO, Adkins JN, Palsson BØ, Hyduke DR. GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data. Bioinformatics. 2013; 29 (22): 2900- 8.
|
| [42] |
Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Dräger A, Mih N, et al. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat Biotechnol. 2018; 36 (3): 272- 81.
|
| [43] |
Shahriyari L. Effect of normalization methods on the performance of supervised learning algorithms applied to HTSeq-FPKM-UQ data sets: 7SK RNA expression as a predictor of survival in patients with colon adenocarcinoma. Briefings Bioinf. 2019; 20 (3): 985- 94.
|
| [44] |
Zhao Y, Wong L, Goh WWB. How to do quantile normalization correctly for gene expression data analyses. Sci Rep. 2020; 10 (1): 15534.
|
| [45] |
Hernández-Ochoa B, Fernández-Rosario F, Castillo-Rodríguez RA, Marhx-Bracho A, Cárdenas-Rodríguez N, Martínez-Rosas V, et al. Validation and selection of new reference genes for RT-qPCR analysis in pediatric glioma of different grades. Genes. 2021; 12 (9): 1335.
|
| [46] |
Merino SM, Gómez de Cedrón M, Moreno Rubio J, Falagán Martínez S, Sánchez Martínez R, Casado E, et al. Lipid metabolism and lung cancer. Crit Rev Oncol Hematol. 2017; 112: 31- 40.
|
| [47] |
Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, et al. NCBI GEO: mining tens of millions of expression profiles -database and tools update. Nucleic Acids Res. 2007; 35: 760- 5.
|
| [48] |
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003; 4 (2): 249- 64.
|
| [49] |
Gautier L, Cope L, Bolstad BM, Irizarry RA. affy——analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004; 20 (3): 307- 15.
|
| [50] |
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012; 483 (7391): 603- 7.
|
| [51] |
Markert EK, Vazquez A. Mathematical models of cancer metabolism. Cancer Metabol. 2015; 3: 1- 13.
|
| [52] |
Tanıl E, Kızılilsoley N, Nikerel E. Genome-scale metabolic model guided subtyping lung cancer towards personalized diagnosis. IFAC-PapersOnLine. 2022; 55 (20): 641- 6.
|
| [53] |
Kızılilsoley N, Tanıl E, Nikerel E. Cost-sensitive learning for rare subtype classification of lung cancer. In: 15th international symposium on health informatics and bioinformatics HIBIT'22 (20-22 October 2022); 2022.
|
| [54] |
LaValle SM, Branicky MS. On the relationship between classical grid search and probabilistic roadmaps. In: International journal of robotics research. SAGE Publications; 2004. p. 59- 75.
|
| [55] |
Zhang L, Zhao X, Wang E, Yang Y, Hu L, Xu H, et al. PYCR1 promotes the malignant progression of lung cancer through the JAK-STAT3 signaling pathway via PRODH-dependent glutamine synthesize. Transl Oncol. 2023; 32: 101667.
|
| [56] |
Chen K, Hong C, Kong W, Li G, Liu Z, Zhu K, et al. ACADL-YAP axis activity in non-small cell lung cancer carcinogenicity. Cancer Cell Int. 2024; 24 (1): 86.
|
| [57] |
Zhai H, Zheng T, Fan L. Unveiling the STAT3-ACC1 axis: a key driver of lipid metabolism and tumor progression in non-small cell lung cancer. J Cancer. 2024; 15 (8): 2340- 53.
|
| [58] |
Mishra NN, Tran TT, Seepersaud R, Garcia-de-la-Maria C, Faull K, Yoon A, et al. Perturbations of phosphatidate cytidylyltransferase (CdsA) mediate daptomycin resistance in Streptococcus mitis/oralis by a novel mechanism. Antimicrob Agents Chemother. 2017; 61 (4): 10- 1128.
|
| [59] |
Li Y, Xie T, Wang S, Yang L, Hao X, Wang Y, et al. Mechanism exploration and model construction for small cell transformation in EGFR-mutant lung adenocarcinomas. Signal Transduct Targeted Ther. 2024; 9 (1): 261.
|
| [60] |
Mayers JR, Torrence ME, Danai LV, Papagiannakopoulos T, Davidson SM, Bauer MR, et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science. 2016; 353 (6304): 1161- 5.
|
| [61] |
Yao X, Deng Y, Zhou J, Jiang L, Song Y. Expression pattern and prognostic analysis of branched-chain amino acid catabolism-related genes in non-small cell lung cancer. Front Biosci-Landmark. 2023; 28 (6): 107.
|
| [62] |
Zhang Y, Zhang J, Shang S, Ma J, Wang F, Wu M, et al. The AST/ALT ratio predicts survival and improves oncological therapy decisions in patients with non-small cell lung cancer receiving immunotherapy with or without radiotherapy. Front Oncol. 2024; 14: 1389804.
|
| [63] |
Zois CE, Harris AL. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J Mol Med. 2016; 94 (2): 137- 54.
|
| [64] |
Long F, Su JH, Liang B, Su LL, Jiang SJ. Identification of gene biomarkers for distinguishing small-cell lung cancer from non-small-cell lung cancer using a network-based approach. BioMed Res Int. 2015; 2015: 685303- 8.
|
| [65] |
Lu Z, Song Q, Jiang S, Song Q, Wang W, Zhang G, et al. Identification of ATP synthase beta subunit (ATPB) on the cell surface as a non-small cell lung cancer (NSCLC) associated antigen. BMC Cancer. 2009; 9: 1- 8.
|
| [66] |
Qu F, Brough SC, Michno W, Madubata CJ, Hartmann GG, Puno A, et al. Crosstalk between small-cell lung cancer cells and astrocytes mimics brain development to promote brain metastasis. Nat Cell Biol. 2023; 25 (10): 1506- 19.
|
| [67] |
Niu C, Qiu W, Li X, Li H, Zhou J, Zhu H. Transketolase serves as a biomarker for poor prognosis in human lung adenocarcinoma. J Cancer. 2022; 13 (8): 2584- 93.
|
| [68] |
Tannoury M, Ayoub M, Dehgane L, Nemazanyy I, Dubois K, Izabelle C, et al. ACOX1-mediated peroxisomal fatty acid oxidation contributes to metabolic reprogramming and survival in chronic lymphocytic leukemia. Leukemia. 2024; 38 (2): 302- 17.
|
| [69] |
Rižner TL, Gjorgoska M. Steroid sulfatase and sulfotransferases in the estrogen and androgen action of gynecological cancers: current status and perspectives. Essays Biochem. 2024; 68 (4): 411- 22.
|
| [70] |
Liu K, Zheng M, Lu R, Du J, Zhao Q, Li Z, et al. The role of CDC25C in cell cycle regulation and clinical cancer therapy: a systematic review. Cancer Cell Int. 2020; 20: 1- 16.
|
| [71] |
Eid RA, Soltan MA, Eldeen MA, Shati AA, Dawood SA, Eissa M, et al. Assessment of RACGAP1 as a prognostic and immunological biomarker in multiple human tumors: a multiomics analysis. Int J Mol Sci. 2022; 23 (22): 14102.
|
| [72] |
Lin J, Zhu Y, Lin Z, Yu J, Lin X, Lai W, et al. The expression regulation and cancer-promoting roles of RACGAP1. Biomolecules. 2024; 15 (1): 3.
|
| [73] |
Deng Y, Zhang X, Li D, Xu H. Pan-cancer analysis of the oncogenic effect of SorCS1 in human tumors and its correlation with LRP2 protein. 2022. Preprint at Research Square:10.21203/rs.3.rs-2186632/v1.
|
| [74] |
Zeng Q, Jiang T, Wang J. Role of LMO7 in cancer. Oncol Rep. 2024; 52: 1- 12.
|
| [75] |
Liu X, Yuan H, Zhou J, Wang Q, Qi X, Bernal C, et al. LMO7 as an unrecognized factor promoting pancreatic cancer progression and metastasis. Front Cell Dev Biol. 2021; 9: 647387.
|
| [76] |
Serva A, Knapp B, Tsai YT, Claas C, Lisauskas T, Matula P, et al. miR-17-5p regulates endocytic trafficking through targeting TBC1D2/Armus. PLoS One. 2012; 7 (12): e52555.
|
| [77] |
Salah G, Obada M, Sweed D, Salama IA, Khalil A, Abdelsattar S. Diagnostic and prognostic significance of tissue lncRNA HOTAIR and hexokinase 2 mRNA expression in patients with pancreatic ductal adenocarcinoma. Egypt Liver J. 2024; 14 (1): 6.
|
| [78] |
Chou CW, Hsieh YH, Ku SC, Shen WJ, Anuraga G, Khoa Ta HD, et al. Potential prognostic biomarkers of OSBPL family genes in patients with pancreatic ductal adenocarcinoma. Biomedicines. 2021; 9 (11): 1601.
|
| [79] |
Xie J, Wu S, Liao W, Ning J, Ding K. Src is a target molecule of mannose against pancreatic cancer cells growth in vitro & in vivo. Glycobiology. 2023; 33: 766- 83.
|
| [80] |
Li R, Wang W, Yang Y, Gu C. Exploring the role of glucose-6-phosphate dehydrogenase in cancer. Oncol Rep. 2020; 44 (6): 2325- 36.
|
| [81] |
Uddin MH, Zhang D, Muqbil I, El-Rayes BF, Chen H, Philip PA, et al. Deciphering cellular plasticity in pancreatic cancer for effective treatments. Cancer Metastasis Rev. 2024; 43 (1): 393- 408.
|
| [82] |
Yang H, Yu P, Gong J. Prognostic biomarker MICAL2 and associates with proliferation, migration and immune infiltration in pancreatic adenocarcinoma. J Appl Genet. 2024: 1- 16.
|
| [83] |
Garg B, Khan S, Courelli AS, Panneerpandian P, Sheik Pran Babu D, Mose ES, et al. MICAL2 promotes pancreatic cancer growth and metastasis. Cancer Res. 2025; 85 (6): 1049- 63.
|
| [84] |
Burela S, He M, Trontzas IP, Gavrielatou N, Schalper KA, Langermann S, et al. BCAM (basal cell adhesion molecule) protein expression in different tumor populations. Discov Oncol. 2024; 15 (1): 381.
|
| [85] |
Okada Y, Takahashi N, Takayama T, Goel A. LAMC2 promotes cancer progression and gemcitabine resistance through modulation of EMT and ATP-binding cassette transporters in pancreatic ductal adenocarcinoma. Carcinogenesis. 2021; 42 (4): 546- 56.
|
| [86] |
Hou J, Jiang C, Wen X, Li C, Xiong S, Yue T, et al. ACSL4 as a potential target and biomarker for anticancer: from molecular mechanisms to clinical therapeutics. Front Pharmacol. 2022; 13: 949863.
|
| [87] |
Graser S, Stierhof YD, Nigg EA. Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J Cell Sci. 2007; 120 (24): 4321- 31.
|
| [88] |
Zhou Y, Li X, Guan A, Zhou H, Zhu Y, Wang R, et al. EPHX2 inhibits colon cancer progression by promoting fatty acid degradation. Front Oncol. 2022; 12: 870721.
|
| [89] |
Huang J, Wang H, Xu Y, Li C, Lv X, Han X, et al. The role of CTNNA1 in malignancies: an updated review. J Cancer. 2023; 14 (2): 219- 30.
|
| [90] |
Johnson AM, Kleczko EK, Nemenoff RA. Eicosanoids in cancer: new roles in immunoregulation. Front Pharmacol. 2020; 11: 595498.
|
| [91] |
Wang B, Pei J, Xu S, Liu J, Yu J. A glutamine tug-of-war between cancer and immune cells: recent advances in unraveling the ongoing battle. J Exp Clin Cancer Res. 2024; 43 (1): 74.
|
| [92] |
Hanahan D, Weinberg RA. Biological hallmarks of cancer. In: Holland-Frei cancer medicine. Wiley; 2022. p. 1- 10.
|
| [93] |
Kim MK, Lane A, Kelley JJ, Lun DS. E-Flux2 and SPOT: validated methods for inferring intracellular metabolic flux distributions from transcriptomic data. PLoS One. 2016; 11 (6): e0157101.
|
| [94] |
Wiechert W, Möllney M, Petersen S, De Graaf AA. A universal framework for 13C metabolic flux analysis. Metab Eng. 2001; 3: 265- 83.
|
| [95] |
Lin E, Lane HY. Machine learning and systems genomics approaches for multi-omics data. Biomark Res. 2017; 5 (1): 2.
|
| [96] |
Wu J, Chen Z, Xiao S, Liu G, Wu W, Wang S. DeepMoIC: multi-omics data integration via deep graph convolutional networks for cancer subtype classification. BMC Genom. 2024; 25 (1): 1209.
|
| [97] |
Lewis NE, Abdel-Haleem AM. The evolution of genome-scale models of cancer metabolism. Front Physiol. 2013; 4: 237.
|
| [98] |
Bucksot J, Ritchie K, Biancalana M, Cole JA, Cook D. Pan-cancer, genome-scale metabolic network analysis of over 10, 000 patients elucidates relationship between metabolism and survival. Cancers. 2024; 16 (13): 2302.
|
| [99] |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144 (5): 646- 74.
|
| [100] |
Johnson JM, Khoshgoftaar TM. Survey on deep learning with class imbalance. J Big Data. 2019; 6: 1- 54.
|
| [101] |
Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A, et al. ArrayExpress--a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 2007; 35: D747- 50.
|
| [102] |
Jiang L, Huang J, Higgs BW, Hu Z, Xiao Z, Yao X, et al. Genomic landscape survey identifies SRSF1 as a key oncodriver in small cell lung cancer. PLoS Genet. 2016; 12 (4): e1005895.
|
| [103] |
Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011; 12 (4): R41.
|
| [104] |
Coarfa C, Grimm SL, Rajapakshe K, Perera D, Lu HY, Wang X, et al. Reverse-phase protein array: technology, application, data processing, and integration. J Biomol Tech. 2021; 32 (1): 15- 29.
|
| [105] |
Damiani C, Colombo R, Gaglio D, Mastroianni F, Pescini D, Westerhoff HV, et al. A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: the WarburQ effect. PLoS Comput Biol. 2017; 13 (9): e1005758.
|
| [106] |
Nilsson A, Nielsen J. Genome scale metabolic modeling of cancer. Metab Eng. 2017; 43: 103- 12.
|
| [107] |
Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. COBRApy: COnstraints-based reconstruction and analysis for Python. BMC Syst Biol. 2013; 7 (1): 74.
|
| [108] |
Cembrowski GS, Westgard JO, Conover WJ, Toren EC. Statistical analysis of method comparison data: testing normality. Am J Clin Pathol. 1979; 72 (1): 21- 6.
|
| [109] |
Bonarius HPJ, Hatzimanikatis V, Meesters KPH, de Gooijer CD, Schmid G, Tramper J. Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechnol Bioeng. 1996; 50 (3): 299- 318.
|
| [110] |
Mann HB, Whitney DR. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat. 1947; 18 (1): 50- 60.
|
| [111] |
Wilcoxon F. Individual comparisons by ranking methods. Biometrics Bull. 1945; 1 (6): 80.
|
| [112] |
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Stat Methodol. 1995; 57 (1): 289- 300.
|
| [113] |
Falcon S, Gentleman R. Hypergeometric testing used for gene set enrichment analysis. In: Bioconductor case studies. New York: Springer New York; 2008. p. 207- 20.
|
| [114] |
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011; 12: 2825- 30.
|
| [115] |
Marcilio WE, Eler DM. From explanations to feature selection: assessing SHAP values as feature selection mechanism. In: 2020 33rd SIBGRAPI conference on graphics, patterns and images. IEEE. 2020. p. 340- 7.
|
| [116] |
Gene Ontology Consortium. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004; 32: 258D- 261.
|
| [117] |
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation. 2021; 2 (3): 100141.
|
RIGHTS & PERMISSIONS
The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.