PDF
(15972KB)
Abstract
Recent advancements in spatial transcriptomics (ST) technologies allow researchers to simultaneously measure RNA expression levels for hundreds to thousands of genes while preserving spatial information within tissues, providing critical insights into spatial gene expression patterns, tissue organization, and gene functionality. However, existing methods for clustering spatially variable genes (SVGs) into co-expression modules often fail to detect rare or unique spatial expression patterns. To address this, we present spatial transcriptomics iterative hierarchical clustering (stIHC), a novel method for clustering SVGs into co-expression modules, representing groups of genes with shared spatial expression patterns. Through three simulations and applications to ST datasets from technologies such as 10x Visium, 10x Xenium, and Spatial Transcriptomics, stIHC outperforms clustering approaches used by popular SVG detection methods, including SPARK, SPARK-X, MERINGUE, and SpatialDE. Gene ontology enrichment analysis confirms that genes within each module share consistent biological functions, supporting the functional relevance of spatial co-expression. Robust across technologies with varying gene numbers and spatial resolution, stIHC provides a powerful tool for decoding the spatial organization of gene expression and the functional structure of complex tissues.
Keywords
functional data analysis
/
functionally related genes
/
gene co-expression modules
/
spatial transcriptomics
/
spatially variable genes
Cite this article
Download citation ▾
Catherine Higgins, Jingyi Jessica Li, Michelle Carey.
Spatial transcriptomics iterative hierarchical clustering (stIHC): A novel method for identifying spatial gene co-expression modules.
Quant. Biol., 2025, 13(4): e70011 DOI:10.1002/qub2.70011
| [1] |
Shah S, Lubeck E, Zhou W, Cai L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron. 2016; 92 (2): 342- 57.
|
| [2] |
10xGenomics. Inside visium spatial capture technology; 2019.
|
| [3] |
Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Sci Technol Humanit. 2019; 363 (6434): 1463- 7.
|
| [4] |
Stickels RR, Murray E, Kumar P, Li J, Marshall JL, Di Bella DJ, et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqv2. Nat Biotechnol. 2021; 39 (3): 313- 9.
|
| [5] |
Janesick A, Shelansky R, Gottscho AD, Wagner F, Williams SR, Rouault M, et al. High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis. Nat Commun. 2023; 14 (1): 8353.
|
| [6] |
Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Spatially resolved, highly multiplexed rna profiling in single cells. Sci Technol Humanit. 2015; 348 (6233): aaa6090.
|
| [7] |
Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L. Single-cell in situ RNA profiling by sequential hybridization. Nat Methods. 2014; 11 (4): 360- 1.
|
| [8] |
Yan G, Hua SH, Li JJ. Categorization of 34 computational methods to detect spatially variable genes from spatially resolved transcriptomics data. Nat Commun. 2025; 16 (1): 1141.
|
| [9] |
Van Dam S, Võsa U, van der Graaf A, Franke L, de Magalhães JP. Gene co-expression analysis for functional classification and gene-disease predictions. Briefings Bioinf. 2018; 19 (4): 575- 92.
|
| [10] |
Zinani OQ, Keseroğlu K, Özbudak EM. Regulatory mechanisms ensuring coordinated expression of functionally related genes. Trends Genet. 2022; 38 (1): 73- 81.
|
| [11] |
Russell M, Aqil A, Saitou M, Gokcumen O, Masuda N. Gene communities in co-expression networks across different tissues. PLoS Comput Biol. 2023; 19 (11): e1011616.
|
| [12] |
Yuan X, Ma Y, Gao R, Cui S, Wang Y, Fa B, et al. HEARTSVG: a fast and accurate method for identifying spatially variable genes in large-scale spatial transcriptomics. Nat Commun. 2024; 15 (1): 5700.
|
| [13] |
Cheng A, Hu G, Li WV. Benchmarking cell-type clustering methods for spatially resolved transcriptomics data. Briefings Bioinf. 2023; 24 (1): bbac475.
|
| [14] |
Allen Institute for Brain Science. Allen Mouse Brain Atlas; 2004.
|
| [15] |
Svensson V, Teichmann SA, Stegle O. SpatialDE: identification of spatially variable genes. Nat Methods. 2018; 15 (5): 343- 6.
|
| [16] |
Sun S, Zhu J, Zhou X. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat Methods. 2020; 17 (2): 193- 200.
|
| [17] |
McLachlan GJ, Basford KE. Mixture models: inference and applications to clustering, 38. New York: M. Dekker; 1988.
|
| [18] |
Zhu J, Sun S, Zhou X. SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies. Genome Biol. 2021; 22 (1): 184.
|
| [19] |
Miller BF, Bambah-Mukku D, Dulac C, Zhuang X, Fan J. Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities. Genome Res. 2021; 31 (10): 1843- 55.
|
| [20] |
Acharyya S, Zhou X, Baladandayuthapani V. SpaceX: gene co-expression network estimation for spatial transcriptomics. Bioinformatics. 2022; 38 (22): 5033- 41.
|
| [21] |
Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci. 1998; 95 (25): 14863- 8.
|
| [22] |
Carey M, Wu S, Gan G, Wu H. Correlation-based iterative clustering methods for time course data: the identification of temporal gene response modules for influenza infection in humans. Infect Dis Model. 2016; 1 (1): 28- 39.
|
| [23] |
Higgins C, Carey M. Addressing class imbalance in functional data clustering. Adv Data Anal Classif. 2024: 1- 28.
|
| [24] |
Sangalli LM, Ramsay JO, Ramsay TO. Spatial spline regression models. J Roy Stat Soc B Stat Methodol. 2013; 75 (4): 681- 703.
|
| [25] |
Wilhelm M, Sangalli LM. Generalized spatial regression with differential regularization. J Stat Comput Simulat. 2016; 86 (13): 2497- 518.
|
| [26] |
McCullagh P, Nelder JA. Generalized linear models. In: Monographs on statistics and applied probability. 2nd ed. Chapman & Hall; 1989.
|
| [27] |
Shewchuk JR. Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In: Workshop on applied computational geometry. Springer. 1996. p. 203- 22.
|
| [28] |
Shewchuk JR. Delaunay refinement algorithms for triangular mesh generation. Comput Geom. 2002; 22 (1-3): 21- 74.
|
| [29] |
Sangalli LM. Spatial regression with partial differential equation regularisation. Int Stat Rev. 2021; 89 (3): 505- 31.
|
| [30] |
Craven P, Wahba G. Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer Math. 1978; 31 (4): 377- 403.
|
| [31] |
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015; 33 (5): 495- 502.
|
| [32] |
Song D, Wang Q, Yan G, Liu T, Sun T, Li JJ. scDesign3 generates realistic in silico data for multimodal single-cell and spatial omics. Nat Biotechnol. 2024; 42 (2): 247- 52.
|
| [33] |
Hubert L, Arabie P. Comparing partitions. J Classif. 1985; 2 (1): 193- 218.
|
| [34] |
Davies DL, Bouldin DW. A cluster separation measure. IEEE Trans Pattern Anal Mach Intell. 1979 (2): 224- 7.
|
| [35] |
Allen Institute for Brain Science. Allen Reference Atlas -Mouse Brain; 2011.
|
| [36] |
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics J Integr Biol. 2012; 16 (5): 284- 7.
|
| [37] |
Shine JM, Lewis LD, Garrett DD, Hwang K. The impact of the human thalamus on brain-wide information processing. Nat Rev Neurosci. 2023; 24 (7): 416- 30.
|
| [38] |
Pang CCC, Kiecker C, O'Brien JT, Noble W, Chang RCC. Ammon's Horn 2 (CA2) of the hippocampus: a long-known region with a new potential role in neurodegeneration. Neuroscientist. 2019; 25 (2): 167- 80.
|
| [39] |
Borzello M, Ramirez S, Treves A, Lee I, Scharfman H, Stark C, et al. Assessments of dentate gyrus function: discoveries and debates. Nat Rev Neurosci. 2023; 24 (8): 502- 17.
|
| [40] |
Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med. 1995; 332 (20): 1351- 63.
|
| [41] |
Luhmann HJ, Kilb W, Hanganu-Opatz I. Subplate cells: amplifiers of neuronal activity in the developing cerebral cortex. Front Neuroanat. 2009; 3: 828.
|
| [42] |
Jan JE, Reiter RJ, Wasdell MB, Bax M. The role of the thalamus in sleep, pineal melatonin production, and circadian rhythm sleep disorders. J Pineal Res. 2009; 46 (1): 1- 7.
|
| [43] |
Leong TL, Bryant VL. B cells in lung cancer——not just a bystander cell: a literature review. Transl Lung Cancer Res. 2021; 10 (6): 2830- 41.
|
| [44] |
Qu Z, Sun F, Zhou J, Li L, Shapiro SD, Xiao G. Interleukin-6 prevents the initiation but enhances the progression of lung cancer. Cancer Res. 2015; 75 (16): 3209- 15.
|
| [45] |
Yamaguchi K, Abe K, Adachi I, Otsubo K, Nagasaki K, Suzuki M, et al. Peptide hormone production in small cell lung carcinomas with particular reference to gastrin-releasing peptide. Jpn J Clin Oncol. 1986; 16 (3): 235- 41.
|
| [46] |
Ünsal E, Atalay F, Atikcan S, Yilmaz A. Prognostic significance of hemostatic parameters in patients with lung cancer. Respir Med. 2004; 98 (2): 93- 8.
|
| [47] |
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013; 19 (11): 1423- 37.
|
| [48] |
Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Sci Technol Humanit. 2016; 353 (6294): 78- 82.
|
RIGHTS & PERMISSIONS
The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.