Modeling angiogenesis under Robin boundary conditions

Pablo Álvarez-Caudevilla , Cristina Brändle , Elena Encinas

Quant. Biol. ›› 2025, Vol. 13 ›› Issue (4) : e70009

PDF (2482KB)
Quant. Biol. ›› 2025, Vol. 13 ›› Issue (4) : e70009 DOI: 10.1002/qub2.70009
RESEARCH ARTICLE

Modeling angiogenesis under Robin boundary conditions

Author information +
History +
PDF (2482KB)

Abstract

In this study, we show an example of a numerical model based on the Keller-Segel system of equations to simulate angiogenesis in response to chemotaxis under Robin boundary conditions, which represent the presence of flux at the tumor. Different parameters of the model are modified to identify key biological factors relevant to the behavior of angiogenesis. The results show that in the presence of a stronger flux, angiogenesis occurs later owing to the chemical flux that creates a more uniform and homogeneous matrix, decreasing the pronunciation of the gradient and reducing the potential of chemotaxis.

Keywords

angiogenesis / Keller-Segel / Robin boundary condition

Cite this article

Download citation ▾
Pablo Álvarez-Caudevilla, Cristina Brändle, Elena Encinas. Modeling angiogenesis under Robin boundary conditions. Quant. Biol., 2025, 13(4): e70009 DOI:10.1002/qub2.70009

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Folkman J, Parris EE. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971; 285 (21): 1182- 6.

[2]

Tahergorabi Z, Khazaei M. A review on angiogenesis and its assays. Iran J Basic Med Sci. 2012; 15: 1110- 26.

[3]

Mantzaris N, Webb S, Othmer H. Mathematical modeling of tumor-induced angiogenesis. J Math Biol. 2004; 49 (2): 111- 87.

[4]

Keller EF, Segel LA. Model for chemotaxis. J Theor Biol. 1971; 30 (2): 225- 34.

[5]

Markowich P, Oelz D. Chemotactic cell motion and biological pattern formation. In: Markowich, PA, editor. Applied partial differential equations: a visual approach. Berlin: Springer-Verlag; 2007. p. 57- 71.

[6]

Chen H, Zhong X-H. Existence and stability of steady solutions to nonlinear parabolic-elliptic systems modelling chemotaxis. Math Nachr. 2006; 279 (13-14): 1441- 7.

[7]

Fujie K, Jiang J. Global existence for a kinetic model of pattern formation with density-suppressed motilities. J Math Biol. 2020; 269 (2): 5338- 78.

[8]

Anderson A, Chaplain M. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol. 1998; 60 (5): 857- 99.

[9]

Lankeit J, Winkler M. Depleting the signal: analysis of chemotaxis-consumption models——a survey. Stud Appl Math. 2023; 151 (4): 1197- 229.

[10]

Delgado M, Suárez A. Study of an elliptic system arising from angiogenesis with chemotaxis and flux at the boundary. J Differ Equ. 2008; 244 (12): 3119- 50.

[11]

Lankeit J. Long-term behaviour in a chemotaxis-fluid system with logistic source. Math Model Methods Appl Sci. 2016; 26 (11): 2071- 109.

[12]

Braukhoff M, Lankeit J. Stationary solutions to a chemotaxis-consumption model with realistic boundary conditions. Math Model Methods Appl Sci. 2019; 29 (11): 2033- 62.

[13]

Braukhoff M, Tang BQ. Global solutions for chemotaxis-Navier-Stokes system with Robin boundary conditions. J Differ Equ. 2020; 269 (12): 10630- 69.

[14]

Braukhoff M. Global (weak) solution of the chemotaxis-Navier-Stokes equations with non-homogeneous boundary conditions and logistic growth. Annales de l'Institut Henri Poincaré C, Analyse non linéaire. 2017; 34 (4): 1013- 39.

[15]

Levine HA, Pamuk S, Sleeman BD, Nilsen-Hamilton M. Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull Math Biol. 2001; 63 (5): 801- 63.

[16]

Pamuk S, Çay I, Sazci A. A 2D mathematical model for tumor angiogenesis: the roles of certain cells in the extra cellular matrix. Math Biosci. 2018; 306: 32- 48.

[17]

Transtrum MK, Machta BB, Brown K, Daniels B, Myers RM, Sehtna JP. Perspective: sloppiness and emergent theories in physics, biology and beyond. J Chem Phys. 2015; 143 (1): 010901.

[18]

Knosalla P. Global solutions of aerotaxis equations. Appl Math (Warsaw). 2017; 44 (1): 135- 48.

[19]

Knosalla P, Nadzieja T. Stationary solutions of aerotaxis equations. Appl Math (Warsaw). 2015; 42 (2-3): 125- 35.

[20]

Maeda H, Fang J, Inutsuka T, Kitamoto Y. Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol. 2003; 3: 319- 28.

[21]

Saito N. Conservative numerical schemes for the Keller-Segel system and numerical results. Kyoto: Research Institute for Mathematical Sciences (RIMS); 2009. p. 125- 46.

RIGHTS & PERMISSIONS

The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (2482KB)

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/