Computational systems biology approaches to cellular aging'Integrating network maps and dynamical models
Hetian Su , Nan Hao
Quant. Biol. ›› 2025, Vol. 13 ›› Issue (4) : e70007
Computational systems biology approaches to cellular aging'Integrating network maps and dynamical models
Cellular aging is a multifaceted complex process. Many genes and factors have been identified that regulate cellular aging. However, how these genes and factors interact with one another and how these interactions drive the aging processes in single cells remain largely unclear. Recently, computational systems biology has demonstrated its potential to empower aging research by providing quantitative descriptions and explanations of complex aging phenotypes, mechanistic insights into the emergent dynamic properties of regulatory networks, and testable predictions that can guide the design of new experiments and interventional strategies. In general, current complex systems approaches can be categorized into two types: (1) network maps that depict the topologies of large-scale molecular networks without detailed characterization of the dynamics of individual components and (2) dynamical models that describe the temporal behavior in a particular set of interacting factors. In this review, we discuss examples that showcase the application of these approaches to cellular aging with a specific focus on the progress in quantifying and modeling the replicative aging of budding yeast Saccharomyces cerevisiae. We further propose potential strategies for integrating network maps and dynamical models toward a more comprehensive, mechanistic, and predictive understanding of cellular aging. Finally, we outline directions and questions in aging research where systems-level approaches may be especially powerful.
cellular aging / gene regulatory network / mathematical model / nonlinear dynamics / systems biology
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.
/
| 〈 |
|
〉 |