Computational systems biology approaches to cellular aging'Integrating network maps and dynamical models

Hetian Su , Nan Hao

Quant. Biol. ›› 2025, Vol. 13 ›› Issue (4) : e70007

PDF (1267KB)
Quant. Biol. ›› 2025, Vol. 13 ›› Issue (4) : e70007 DOI: 10.1002/qub2.70007
REVIEW ARTICLE

Computational systems biology approaches to cellular aging'Integrating network maps and dynamical models

Author information +
History +
PDF (1267KB)

Abstract

Cellular aging is a multifaceted complex process. Many genes and factors have been identified that regulate cellular aging. However, how these genes and factors interact with one another and how these interactions drive the aging processes in single cells remain largely unclear. Recently, computational systems biology has demonstrated its potential to empower aging research by providing quantitative descriptions and explanations of complex aging phenotypes, mechanistic insights into the emergent dynamic properties of regulatory networks, and testable predictions that can guide the design of new experiments and interventional strategies. In general, current complex systems approaches can be categorized into two types: (1) network maps that depict the topologies of large-scale molecular networks without detailed characterization of the dynamics of individual components and (2) dynamical models that describe the temporal behavior in a particular set of interacting factors. In this review, we discuss examples that showcase the application of these approaches to cellular aging with a specific focus on the progress in quantifying and modeling the replicative aging of budding yeast Saccharomyces cerevisiae. We further propose potential strategies for integrating network maps and dynamical models toward a more comprehensive, mechanistic, and predictive understanding of cellular aging. Finally, we outline directions and questions in aging research where systems-level approaches may be especially powerful.

Keywords

cellular aging / gene regulatory network / mathematical model / nonlinear dynamics / systems biology

Cite this article

Download citation ▾
Hetian Su, Nan Hao. Computational systems biology approaches to cellular aging'Integrating network maps and dynamical models. Quant. Biol., 2025, 13(4): e70007 DOI:10.1002/qub2.70007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol. 2012; 22 (17): R741- 52.

[2]

DiLoreto R, Murphy CT. The cell biology of aging. Mol Biol Cell. 2015; 26 (25): 4524- 31.

[3]

McMurray MA, Gottschling DE. Aging and genetic instability in yeast. Curr Opin Microbiol. 2004; 7 (6): 673- 9.

[4]

Mahmoudi S, Brunet A. Aging and reprogramming: a two-way street. Curr Opin Cell Biol. 2012; 24 (6): 744- 56.

[5]

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023; 186 (2): 243- 78.

[6]

Vijg J, Suh Y. Genome instability and aging. Annu Rev Physiol. 2013; 75 (1): 645- 68.

[7]

Janssens GE, Veenhoff LM. Evidence for the hallmarks of human aging in replicatively aging yeast. Microb Cell. 2016; 3 (7): 263- 74.

[8]

Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature. 2000; 408 (6809): 255- 62.

[9]

Fontana L, Partridge L, Longo VD. Extending healthy life span-from yeast to humans. Science. 2010; 328 (5976): 321- 6.

[10]

Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013; 493 (7432): 338- 45.

[11]

Kim SK. Common aging pathways in worms, flies, mice and humans. J Exp Biol. 2007; 210 (9): 1607- 12.

[12]

Cohen AA, Ferrucci L, Fülöp T, Gravel D, Hao N, Kriete A, et al. A complex systems approach to aging biology. Nat Aging. 2022; 2: 580- 91.

[13]

Beyer A, Bandyopadhyay S, Ideker T. Integrating physical and genetic maps: from genomes to interaction networks. Nat Rev Genet. 2007; 8 (9): 699- 710.

[14]

Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000; 403 (6770): 623- 7.

[15]

Ideker T, Lauffenburger D. Building with a scaffold: emerging strategies for high-to low-level cellular modeling. Trends Biotechnol. 2003; 21 (6): 255- 62.

[16]

Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, et al. A global genetic interaction network maps a wiring diagram of cellular function. Science. 2016; 353 (6306): aaf1420.

[17]

Faisal FE, Milenković T. Dynamic networks reveal key players in aging. Bioinformatics. 2014; 30 (12): 1721- 9.

[18]

Lorenz DR, Cantor CR, Collins JJ. A network biology approach to aging in yeast. Proc Natl Acad Sci USA. 2009; 106 (4): 1145- 50.

[19]

Qin H. Estimating network changes from lifespan measurements using a parsimonious gene network model of cellular aging. BMC Bioinf. 2019; 20 (1): 599.

[20]

Simkó GI, Gyurkó D, Veres DV, Nánási T, Csermely P. Network strategies to understand the aging process and help age-related drug design. Genome Med. 2009; 1 (9): 90.

[21]

Li Y, Jiang Y, Paxman J, O'Laughlin R, Klepin S, Zhu Y, et al. A programmable fate decision landscape underlies single-cell aging in yeast. Science. 2020; 369 (6501): 325- 9.

[22]

Tyson JJ, Chen KC, Novak B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol. 2003; 15 (2): 221- 31.

[23]

Ay A, Arnosti DN. Mathematical modeling of gene expression: a guide for the perplexed biologist. Crit Rev Biochem Mol Biol. 2011; 46 (2): 137- 51.

[24]

O'Laughlin R, Jin M, Li Y, Pillus L, Tsimring LS, Hasty J, et al. Advances in quantitative biology methods for studying replicative aging in Saccharomyces cerevisiae. Transl Med Aging. 2020; 4: 151- 60.

[25]

Santiago E, Moreno DF, Acar M. Modeling aging and its impact on cellular function and organismal behavior. Exp Gerontol. 2021; 155: 111577.

[26]

Kirkwood TBL. Systems biology of ageing and longevity. Philos Trans R Soc Lond B Biol Sci. 2011; 366 (1561): 64- 70.

[27]

Martinez Guimera A, Welsh C, Dalle Pezze P, Fullard N, Nelson G, Roger M, et al. Systems modelling ageing: from single senescent cells to simple multi-cellular models. Essays Biochem. 2017; 61 (3): 369- 77.

[28]

Vural DC, Morrison G, Mahadevan L. Aging in complex interdependency networks. Phys Rev E. 2014; 89 (2): 022811.

[29]

Janssens GE, Meinema AC, González J, Wolters JC, Schmidt A, Guryev V, et al. Protein biogenesis machinery is a driver of replicative aging in yeast. eLife. 2015; 4: e08527.

[30]

Guo HB, Ghafari M, Dang W, Qin H. Protein interaction potential landscapes for yeast replicative aging. Sci Rep. 2021; 11 (1): 7143.

[31]

Eder M, Martin OM, Oswal N, Sedlackova L, Moutinho C, Del Carmen-Fabregat A, et al. Systematic mapping of organism-scale gene-regulatory networks in aging using population asynchrony. Cell. 2024; 187 (15): 3919- 35.e19.

[32]

Acar M, Pando BF, Arnold FH, Elowitz MB, van Oudenaarden A. A general mechanism for network-dosage compensation in gene circuits. Science. 2010; 329 (5999): 1656- 60.

[33]

Peng W, Song R, Acar M. Noise reduction facilitated by dosage compensation in gene networks. Nat Commun. 2016; 7 (1): 12959.

[34]

Liu P, Song R, Elison GL, Peng W, Acar M. Noise reduction as an emergent property of single-cell aging. Nat Commun. 2017; 8 (1): 680.

[35]

Raser JM, O'Shea EK. Control of stochasticity in eukaryotic gene expression. Science. 2004; 304 (5678): 1811- 4.

[36]

Li Y, Jin M, O'Laughlin R, Bittihn P, Tsimring LS, Pillus L, et al. Multigenerational silencing dynamics control cell aging. Proc Natl Acad Sci USA. 2017; 114 (42): 11253- 8.

[37]

Erjavec N, Cvijovic M, Klipp E, Nyström T. Selective benefits of damage partitioning in unicellular systems and its effects on aging. Proc Natl Acad Sci USA. 2008; 105 (48): 18764- 9.

[38]

Kaganovich D, Kopito R, Frydman J. Misfolded proteins partition between two distinct quality control compartments. Nature. 2008; 454 (7208): 1088- 95.

[39]

Spokoini R, Moldavski O, Nahmias Y, England J, Schuldiner M, Kaganovich D. Confinement to organelle-associated inclusion structures mediates asymmetric inheritance of aggregated protein in budding yeast. Cell Rep. 2012; 2 (4): 738- 47.

[40]

Song J, Yang Q, Yang J, Larsson L, Hao X, Zhu X, et al. Essential genetic interactors of SIR2 required for spatial sequestration and asymmetrical inheritance of protein aggregates. PLoS Genet. 2014; 10 (7): e1004539.

[41]

Vedel S, Nunns H, Košmrlj A, Semsey S, Trusina A. Asymmetric damage segregation constitutes an emergent population-level stress response. Cell Syst. 2016; 3 (2): 187- 98.

[42]

Song R, Acar M. Stochastic modeling of aging cells reveals how damage accumulation, repair, and cell-division asymmetry affect clonal senescence and population fitness. BMC Bioinf. 2019; 20 (1): 391.

[43]

Rang CU, Peng AY, Chao L. Temporal dynamics of bacterial aging and rejuvenation. Curr Biol. 2011; 21: 1813- 6.

[44]

Andrade-Restrepo M. Is aggregate-dependent yeast aging fortuitous? A model of damage segregation and aggregate dynamics. Biophys J. 2017; 113 (11): 2464- 76.

[45]

Chao L. A model for damage load and its implications for the evolution of bacterial aging. PLoS Genet. 2010; 6 (8): e1001076.

[46]

Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. F. R. S. &c. By Benjamin Gompertz, Esq. F. R. S. Abstr Pap Print Philos Trans R Soc Lond. 1997; 2: 252- 3.

[47]

Kogan V, Molodtsov I, Menshikov LI, Reis RJS, Fedichev P. Stability analysis of a model gene network links aging, stress resistance and negligible senescence. Sci Rep. 2015; 5 (1): 13589.

[48]

Karin O, Agrawal A, Porat Z, Krizhanovsky V, Alon U. Senescent cell turnover slows with age providing an explanation for the Gompertz law. Nat Commun. 2019; 10 (1): 5495.

[49]

Liu P, Acar M. The generational scalability of single-cell replicative aging. Sci Adv. 2018; 4 (1): eaao4666.

[50]

Güven E, Akçay S, Qin H. The effect of Gaussian noise on maximum likelihood fitting of Gompertz and Weibull mortality models with yeast lifespan data. Exp Aging Res. 2019; 45 (2): 167- 79.

[51]

Yang Y, Karin O, Mayo A, Song X, Chen P, Santos AL, et al. Damage dynamics and the role of chance in the timing of E. coli cell death. Nat Commun. 2023; 14 (1): 2209.

[52]

Morlot S, Song J, Léger-Silvestre I, Matifas A, Gadal O, Charvin G. Excessive rDNA transcription drives the disruption in nuclear homeostasis during entry into senescence in budding yeast. Cell Rep. 2019; 28 (2): 408- 22.e4.

[53]

Sinclair DA, Guarente L. Extrachromosomal rDNA circles-a cause of aging in yeast. Cell. 1997; 91 (7): 1033- 42.

[54]

Jin M, Li Y, O'Laughlin R, Bittihn P, Pillus L, Tsimring LS, et al. Divergent aging of isogenic yeast cells revealed through single-cell phenotypic dynamics. Cell Syst. 2019; 8: 1- 12.

[55]

Zhou Z, Liu Y, Feng Y, Klepin S, Tsimring LS, Pillus L, et al. Engineering longevity'design of a synthetic gene oscillator to slow cellular aging. Science. 2023; 380: 376- 81.

[56]

Liu Y, Zhou Z, Su H, Wu S, Ni G, Zhang A, et al. Enhanced cellular longevity arising from environmental fluctuations. Cell Syst. 2024; 15 (8): 738- 52.e5.

[57]

Tsai K, Zhou Z, Yang J, Xu Z, Xu S, Zandi R, et al. Study of impacts of two types of cellular aging on the yeast bud morphogenesis. PLoS Comput Biol. 2024; 20 (9): e1012491.

[58]

Chen KL, Crane MM, Kaeberlein M. Microfluidic technologies for yeast replicative lifespan studies. Mech Ageing Dev. 2017; 161: 262- 9.

[59]

Crane MM, Chen KL, Blue BW, Kaeberlein M. Trajectories of aging: how systems biology in yeast can illuminate mechanisms of personalized aging. Proteomics. 2020; 20 (5-6): e1800420.

[60]

Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol. 2000; 7 (3-4): 601- 20.

[61]

Sachs K, Gifford D, Jaakkola T, Sorger P, Lauffenburger DA. Bayesian network approach to cell signaling pathway modeling. Sci STKE. 2002; 2002 (148): pe38.

[62]

Melas IN, Mitsos A, Messinis DE, Weiss TS, Alexopoulos LG. Combined logical and data-driven models for linking signalling pathways to cellular response. BMC Syst Biol. 2011; 5 (1): 107.

[63]

Anastassiou D. Computational analysis of the synergy among multiple interacting genes. Mol Syst Biol. 2007; 3 (1): 83.

[64]

Ronen M, Rosenberg R, Shraiman BI, Alon U. Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc Natl Acad Sci USA. 2002; 99 (16): 10555- 60.

[65]

Kok F, Rosenblatt M, Teusel M, Nizharadze T, Gonçalves Magalhães V, Dächert C, et al. Disentangling molecular mechanisms regulating sensitization of interferon alpha signal transduction. Mol Syst Biol. 2020; 16 (7): e8955.

[66]

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002; 298 (5594): 824- 7.

[67]

Shen-Orr SS, Milo R, Mangan S, Alon U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet. 2002; 31 (1): 64- 8.

[68]

Mudla A, Jiang Y, Arimoto K, Xu B, Rajesh A, Ryan AP, et al. Cell-cycle-gated feedback control mediates desensitization to interferon stimulation. eLife. 2020; 9: e58825.

[69]

Rinaldi L, Delle Donne R, Catalanotti B, Torres-Quesada O, Enzler F, Moraca F, et al. Feedback inhibition of cAMP effector signaling by a chaperone-assisted ubiquitin system. Nat Commun. 2019; 10 (1): 2572.

[70]

Jiang Y, Hao N. Memorizing environmental signals through feedback and feedforward loops. Curr Opin Cell Biol. 2021; 69: 96- 102.

[71]

Ferrell JE, Tsai TYC, Yang Q. Modeling the cell cycle: why do certain circuits oscillate? Cell. 2011; 144 (6): 874- 85.

[72]

Mangan S, Alon U. Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA. 2003; 100 (21): 11980- 5.

[73]

Jiang Y, AkhavanAghdam Z, Li Y, Zid BM, Hao N. A protein kinase A-regulated network encodes short-and long-lived cellular memories. Sci Signal. 2020; 13 (632): eaay3585.

[74]

Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet. 2007; 8 (6): 450- 61.

[75]

Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci. 2006; 103 (23): 8577- 82.

[76]

Litvin O, Causton HC, Chen BJ, Pe'er D. Modularity and interactions in the genetics of gene expression. Proc Natl Acad Sci. 2009; 106 (16): 6441- 6.

[77]

Serban M. Exploring modularity in biological networks. Phil Trans Biol Sci. 2020; 375 (1796): 20190316.

[78]

Tornow S, Mewes HW. Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Res. 2003; 31: 6283- 9.

[79]

Qin H, Lu HHS, Wu WB, Li WH. Evolution of the yeast protein interaction network. Proc Natl Acad Sci. 2003; 100 (22): 12820- 4.

[80]

Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans R Soc A Math Phys Eng Sci. 2016; 374 (2065): 20150202.

[81]

Dorrity MW, Saunders LM, Queitsch C, Fields S, Trapnell C. Dimensionality reduction by UMAP to visualize physical and genetic interactions. Nat Commun. 2020; 11 (1): 1537.

[82]

Xue H, Xian B, Dong D, Xia K, Zhu S, Zhang Z, et al. A modular network model of aging. Mol Syst Biol. 2007; 3 (1): 147.

[83]

Soti C, Csermely P. Aging cellular networks: chaperones as major participants. Exp Gerontol. 2007; 42 (1-2): 113- 9.

[84]

Paxman J, Zhou Z, O'Laughlin R, Liu Y, Li Y, Tian W, et al. Age-dependent aggregation of ribosomal RNA-binding proteins links deterioration in chromatin stability with challenges to proteostasis. eLife. 2022; 11: e75978.

[85]

Mirkovic M, McCarthy J, Meinema AC, Parenteau J, Lee SS, Elela SA, et al., Dissociation of the nuclear basket triggers chromosome loss in aging yeast. eLife. 2025; 14: RP104530.

[86]

Hendrickson DG, Soifer I, Wranik BJ, Kim G, Robles M, Gibney PA, et al. A new experimental platform facilitates assessment of the transcriptional and chromatin landscapes of aging yeast. eLife. 2018; 7: e39911.

[87]

Kaeberlein M, Andalis AA, Fink GR, Guarente L. High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol. 2002; 22: 8056- 66.

[88]

Heilbronn LK, Ravussin E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr. 2003; 78 (3): 361- 9.

[89]

Taormina G, Mirisola MG. Calorie restriction in mammals and simple model organisms. BioMed Res Int. 2014; 2014: 308690.

[90]

Wasko BM, Kaeberlein M. Yeast replicative aging: a paradigm for defining conserved longevity interventions. FEMS Yeast Res. 2014; 14 (1): 148- 59.

[91]

Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012; 11 (2): 230- 41.

[92]

Papadopoli D, Boulay K, Kazak L, Pollak M, Mallette F, Topisirovic I, et al. mTOR as a central regulator of lifespan and aging. F1000Res. 2019; 8: F1000 Faculty Rev- 998.

[93]

de Cabo R, Mattson MP. Effects of intermittent fasting on health, aging, and disease. N Engl J Med. 2019; 381 (26): 2541- 51.

[94]

Hwangbo D-S, Lee H-Y, Abozaid LS, Min K-J. Mechanisms of lifespan regulation by calorie restriction and intermittent fasting in model organisms. Nutrients. 2020; 12 (4): 1194.

[95]

Ulgherait M, Midoun AM, Park SJ, Gatto JA, Tener SJ, Siewert J, et al. Circadian autophagy drives iTRF-mediated longevity. Nature. 2021; 598 (7880): 353- 8.

[96]

Anson RM, Guo Z, de Cabo R, Iyun T, Rios M, Hagepanos A, et al. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci USA. 2003; 100 (10): 6216- 20.

[97]

Mitchell SJ, Bernier M, Mattison JA, Aon MA, Kaiser TA, Anson RM, et al. Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metab. 2019; 29 (1): 221- 8.e3.

RIGHTS & PERMISSIONS

The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (1267KB)

200

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/