Cell lineage tracing: Methods, applications, and challenges

Shanjun Mao , Chenyang Zhang , Runjiu Chen , Shan Tang , Xiaodan Fan , Jie Hu

Quant. Biol. ›› 2025, Vol. 13 ›› Issue (4) : e70006

PDF (1286KB)
Quant. Biol. ›› 2025, Vol. 13 ›› Issue (4) : e70006 DOI: 10.1002/qub2.70006
REVIEW ARTICLE

Cell lineage tracing: Methods, applications, and challenges

Author information +
History +
PDF (1286KB)

Abstract

Cell lineage tracing is a crucial technique for understanding cell fate and lineage relationships, with wide applications in developmental biology, tissue regeneration, and disease progression studies. Over the years, experimental cell lineage tracing methods have advanced from early labeling techniques to modern genetic tools such as CRISPR-Cas9-based barcoding, whereas computational methods have emerged to analyze high-dimensional data from single-cell sequencing and other omics technologies. This paper reviews both experimental and computational methods, highlighting their respective strengths, limitations, and synergies. Experimental techniques focus on labeling and tracking cells, whereas computational approaches reconstruct lineage relationships and model cellular dynamics. Despite significant progress, challenges remain, including issues with accuracy, resolution, multi-omics integration, and scalability. Future directions involve improvements in experimental techniques and the development of computational methods enhanced by advancements in artificial intelligence. These innovations are expected to drive the field forward, offering potential applications in uncovering the mysteries of life.

Keywords

cell lineage tracing / CRISPR-Cas9 / RNA velocity / single-cell sequencing

Cite this article

Download citation ▾
Shanjun Mao, Chenyang Zhang, Runjiu Chen, Shan Tang, Xiaodan Fan, Jie Hu. Cell lineage tracing: Methods, applications, and challenges. Quant. Biol., 2025, 13(4): e70006 DOI:10.1002/qub2.70006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kretzschmar K, Watt FM. Lineage tracing. Cell. 2012; 148 (1): 33- 45.

[2]

Hsu YC. Theory and practice of lineage tracing. Stem Cell. 2015; 33 (11): 3197- 204.

[3]

Blanpain C, Simons BD. Unravelling stem cell dynamics by lineage tracing. Nat Rev Mol Cell Biol. 2013; 14 (8): 489- 502.

[4]

Baron CS, Oudenaarden vA. Unravelling cellular relationships during development and regeneration using genetic lineage tracing. Nat Rev Mol Cell Biol. 2019; 20 (12): 753- 65.

[5]

Conklin EG. The organization and cell lineage of the ascidian egg; 1905.

[6]

Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983; 100 (1): 64- 119.

[7]

Deppe U, Schierenberg E, Cole T, Krieg C, Schmitt D, Yoder B, et al. Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proc Natl Acad Sci. 1978; 75 (1): 376- 80.

[8]

Kubagawa H, Vogler L, Capra J, Conrad M, Lawton A, Cooper M. Studies on the clonal origin of multiple myeloma. Use of individually specific (idiotype) antibodies to trace the oncogenic event to its earliest point of expression in B-cell differentiation. J Exp Med. 1979; 150 (4): 792- 807.

[9]

Zalokar M, Sardet C. Tracing of cell lineage in embryonic development of Phallusia mammillata (Ascidia) by vital staining of mitochondria. Dev Biol. 1984; 102 (1): 195- 205.

[10]

Li H, Zhuang Y, Zhang B, Xu X, Liu B. Application of lineage tracing in central nervous system development and regeneration. Mol Biotechnol. 2024; 66 (7): 1552- 62.

[11]

Pucella JN, Upadhaya S, Reizis B. The source and dynamics of adult hematopoiesis: insights from lineage tracing. Annu Rev Cell Dev Biol. 2020; 36 (1): 529- 50.

[12]

Yao M, Ren T, Pan Y, Xue X, Li R, Zhang L, et al. A new generation of lineage tracing dynamically records cell fate choices. Int J Mol Sci. 2022; 23 (9): 5021.

[13]

Weinreb C, Rodriguez-Fraticelli A, Camargo FD, Klein AM. Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science. 2020; 367 (6479): eaaw3381.

[14]

Navin NE, Hicks J. Tracing the tumor lineage. Mol Oncol. 2010; 4 (3): 267- 83.

[15]

Quinn JJ, Jones MG, Okimoto RA, Nanjo S, Chan MM, Yosef N, et al. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science. 2021; 371 (6532): eabc1944.

[16]

Eyler CE, Matsunaga H, Hovestadt V, Vantine SJ, Galen vP, Bernstein BE. Single-cell lineage analysis reveals genetic and epigenetic interplay in glioblastoma drug resistance. Genome Biol. 2020; 21: 1- 21.

[17]

Rodriguez-Fraticelli AE, Weinreb C, Wang SW, Migueles RP, Jankovic M, Usart M, et al. Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature. 2020; 583 (7817): 585- 9.

[18]

Nathans JF, Ayers JL, Shendure J, Simpson CL. Genetic tools for cell lineage tracing and profiling developmental trajectories in the skin. J Invest Dermatol. 2024; 144 (5): 936- 49.

[19]

Serbedzija GN, Bronner-Fraser M, Fraser SE. A vital dye analysis of the timing and pathways of avian trunk neural crest cell migration. Development. 1989; 106 (4): 809- 16.

[20]

Serbedzija GN, Burgan S, Fraser SE, Bronner-Fraser M. Vital dye labelling demonstrates a sacral neural crest contribution to the enteric nervous system of chick and mouse embryos. Development. 1991; 111 (4): 857- 66.

[21]

Kühn R, Torres R M. Cre/loxP recombination system and gene targeting. In: Transgenesis techniques: principles and protocols; 2002. p. 175- 204.

[22]

Camilli A, Beattie DT, Mekalanos JJ. Use of genetic recombination as a reporter of gene expression. Proc Natl Acad Sci. 1994; 91 (7): 2634- 8.

[23]

Stender AS, Marchuk K, Liu C, Sander S, Meyer MW, Smith EA, et al. Single cell optical imaging and spectroscopy. Chem Rev. 2013; 113 (4): 2469- 527.

[24]

Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 2010; 7 (8): 603- 14.

[25]

Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell trajectory inference methods. Nat Biotechnol. 2019; 37 (5): 547- 54.

[26]

Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Mol Cell. 2015; 58 (4): 586- 97.

[27]

Chen C, Liao Y, Peng G. Connecting past and present: single-cell lineage tracing. Protein Cell. 2022; 13 (11): 790- 807.

[28]

Kester L, Van Oudenaarden A. Single-cell transcriptomics meets lineage tracing. Cell Stem Cell. 2018; 23 (2): 166- 79.

[29]

Masuyama N, Mori H, Yachie N. DNA barcodes evolve for high-resolution cell lineage tracing. Curr Opin Chem Biol. 2019; 52: 63- 71.

[30]

Mai U, Hu G, Raphael BJ. Maximum likelihood phylogeographic inference of cell motility and cell division from spatial lineage tracing data. Bioinformatics. 2024; 40 (Suppl ment_1): i228- 36.

[31]

Deng S, Gong H, Zhang D, Zhang M, He X. A statistical method for quantifying progenitor cells reveals incipient cell fate commitments. Nat Methods. 2024; 21 (4): 597- 608.

[32]

Swift M, Horns F, Quake SR. Lineage tracing reveals fate bias and transcriptional memory in human B cells. Life Sci Alliance. 2023; 6 (3): e202201792.

[33]

Jiang J, Ye X, Kong Y, Guo C, Zhang M, Cao F, et al. scLTdb: a comprehensive single-cell lineage tracing database. Nucleic Acids Res. 2025; 53 (D1): D1173- 85.

[34]

Spanjaard B, Hu B, Mitic N, Olivares-Chauvet P, Janjuha S, Ninov N, et al. Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat Biotechnol. 2018; 36 (5): 469- 73.

[35]

Raj B, Gagnon JA, Schier AF. Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT. Nat Protoc. 2018; 13 (11): 2685- 713.

[36]

Kalhor R, Kalhor K, Mejia L, Leeper K, Graveline A, Mali P, et al. Developmental barcoding of whole mouse via homing CRISPR. Science. 2018; 361 (6405): eaat9804.

[37]

Packer JS, Zhu Q, Huynh C, Sivaramakrishnan P, Preston E, Dueck H, et al. A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution. Science. 2019; 365 (6459): eaax1971.

[38]

Brown W, Liu J, Tsang M, Deiters A. Cell lineage tracing in zebrafish embryos with an expanded genetic code. Chembiochem. 2018; 19 (12): 1244- 9.

[39]

Pan YA, Freundlich T, Weissman TA, Schoppik D, Wang XC, Zimmerman S, et al. Zebrabow: multi-spectral cell labeling for cell tracing and lineage analysis in zebrafish. Development. 2013; 140 (13): 2835- 46.

[40]

Wagner DE, Weinreb C, Collins ZM, Briggs JA, Megason SG, Klein AM. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science. 2018; 360 (6392): 981- 7.

[41]

Bowling S, Sritharan D, Osorio FG, Nguyen M, Cheung P, Rodriguez-Fraticelli A, et al. An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells. Cell. 2020; 181 (6): 1410- 22.

[42]

Yilmaz V, Louca P, Potamiti L, Panayiotidis M, Strati K. A novel lineage tracing mouse model for studying early MmuPV1 infections. Elife. 2022; 11: e72638.

[43]

Lawson KA, Meneses JJ, Pedersen RA. Cell fate and cell lineage in the endoderm of the presomite mouse embryo, studied with an intracellular tracer. Dev Biol. 1986; 115 (2): 325- 39.

[44]

Linker M. Generation of fluorescent esophageal adenocarcinoma cells for lineage tracing within composite 3D culture models. 2023.

[45]

Caiado F, Maia-Silva D, Jardim C, Schmolka N, Carvalho T, Reforço C, et al. Lineage tracing of acute myeloid leukemia reveals the impact of hypomethylating agents on chemoresistance selection. Nat Commun. 2019; 10 (1): 4986.

[46]

Cardo LF, Monzón-Sandoval J, Li Z, Webber C, Li M. Single-cell transcriptomics and in vitro lineage tracing reveals differential susceptibility of human iPSC-derived midbrain dopaminergic neurons in a cellular model of Parkinson's disease. Cells. 2023; 12 (24): 2860.

[47]

Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genom. 2018; 19: 1- 16.

[48]

La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, et al. RNA velocity of single cells. Nature. 2018; 560 (7719): 494- 8.

[49]

Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014; 346 (6213): 1258096.

[50]

Ran F, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013; 8 (11): 2281- 308.

[51]

Persons D, Allay J, Allay E, Smeyne RJ, Ashmun RA, Sorrentino BP, et al. Retroviral-mediated transfer of the green fluorescent protein gene into murine hematopoietic cells facilitates scoring and selection of transduced progenitors in vitro and identification of genetically modified cells in vivo. Blood. 1997; 90 (5): 1777- 86.

[52]

Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014; 32 (4): 381- 6.

[53]

Jones MG, Khodaverdian A, Quinn JJ, Chan MM, Hussmann JA, Wang R, et al. Inference of single-cell phylogenies from lineage tracing data using Cassiopeia. Genome Biol. 2020; 21: 1- 27.

[54]

Lyne AM, Perié L. Comparing phylogenetic approaches to reconstructing cell lineage from microsatellites with missing data. IEEE ACM Trans Comput Biol Bioinf. 2020; 18 (6): 2291- 301.

[55]

Wagner DE, Klein AM. Lineage tracing meets single-cell omics: opportunities and challenges. Nat Rev Genet. 2020; 21 (7): 410- 27.

[56]

Cotterell J, Vila-Cejudo M, Batlle-Morera L, Sharpe J. Endogenous CRISPR/Cas9 arrays for scalable whole-organism lineage tracing. Development. 2020; 147 (9): dev184481.

[57]

Serbedzija GN, Fraser SE, Bronner-Fraser M. Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labeling. Development. 1990; 108 (4): 605- 12.

[58]

Persons DA, Allay JA, Allay ER, Smeyne RJ, Ashmun RA, Sorrentino BP, et al. Retroviral-mediated transfer of the green fluorescent protein gene into murine hematopoietic cells facilitates scoring and selection of transduced progenitors in vitro and identification of genetically modified cells in vivo. Blood. 1997; 90 (5): 1777- 86.

[59]

Kuhn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science. 1995; 269 (5229): 1427- 9.

[60]

Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science. 1994; 263 (5148): 802- 5.

[61]

Alemany A, Florescu M, Baron CS, Peterson-Maduro J, Van Oudenaarden A. Whole-organism clone tracing using single-cell sequencing. Nature. 2018; 556 (7699): 108- 12.

[62]

Michlits G, Hubmann M, Wu SH, Vainorius G, Budusan E, Zhuk S, et al. CRISPRUMI: single-cell lineage tracing of pooled CRISPR-Cas9 screens. Nat Methods. 2017; 14 (12): 1191- 7.

[63]

Leeper K, Kalhor K, Vernet A, Graveline A, Church GM, Mali P, et al. Lineage barcoding in mice with homing CRISPR. Nat Protoc. 2021; 16 (4): 2088- 108.

[64]

Xiao Y, Jin W, Ju L, Fu J, Wang G, Yu M, et al. Tracking single-cell evolution using clock-like chromatin accessibility loci. Nat Biotechnol. 2024: 1- 15.

[65]

Wei CJY, Zhang K. RETrace: simultaneous retrospective lineage tracing and methylation profiling of single cells. Genome Res. 2020; 30 (4): 602- 10.

[66]

Liu Z, Zeng H, Xiang H, Deng S, He X. Achieving single-cell-resolution lineage tracing in zebrafish by continuous barcoding mutations during embryogenesis. Journal of Genetics and Genomics. 2024; 51 (9): 947- 56.

[67]

Ye C, Chen Z, Liu Z, Wang F, He X. Defining endogenous barcoding sites for CRISPR/Cas9-based cell lineage tracing in zebrafish. Journal of Genetics and Genomics. 2020; 47 (2): 85- 91.

[68]

Cong L, Zhang F. Genome engineering using CRISPR-Cas9 system. Chromosomal Mutagenesis. 2015: 197- 217.

[69]

Wang F, Qi LS. Applications of CRISPR genome engineering in cell biology. Trends Cell Biol. 2016; 26 (11): 875- 88.

[70]

Liu F, Zhang X, Yang Y. Simulation of CRISPR-Cas9 editing on evolving barcode and accuracy of lineage tracing. Sci Rep. 2024; 14 (1): 19213.

[71]

Zafar H, Lin C, Bar-Joseph Z. Single-cell lineage tracing by integrating CRISPR-Cas9 mutations with transcriptomic data. Nat Commun. 2019; 11 (1): 3055.

[72]

Sashittal P, Schmidt H, Chan M, Raphael BJ. Startle: a star homoplasy approach for CRISPR-Cas9 lineage tracing. Cell Systems. 2023; 14 (12): 1113- 21.

[73]

Donà M, Bradamante G, Bogojevic Z, Gutzat R, Streubel S, Mosiolek M, et al. A versatile CRISPR-based system for lineage tracing in living plants. Plant J. 2023; 115 (5): 1169- 84.

[74]

Rodriguez-Fraticelli A, Morris SA. In preprints: the fast-paced field of single-cell lineage tracing. Development. 2022; 149 (11): dev200877.

[75]

Chen W, Choi J, Li X, Nathans JF, Martin B, Yang W, et al. Symbolic recording of signalling and cis-regulatory element activity to DNA. Nature. 2024; 632 (8027): 1073- 81.

[76]

Junker JP, Spanjaard B, Peterson-Maduro J, Alemany A, Hu B, Florescu M, et al. Massively parallel whole-organism lineage tracing using CRISPR/Cas9 induced genetic scars. 2016. Preprint at bioRxiv:056499.

[77]

Liao H, Choi J, Shendure J. Molecular recording using DNA Typewriter. Nat Protoc. 2024; 19 (10): 2833- 62.

[78]

Wild SA, Cannell IG, Nicholls A, Kania K, Bressan D, Hannon GJ, et al. Clonal transcriptomics identifies mechanisms of chemoresistance and empowers rational design of combination therapies. eLife. 2022; 11: e80981.

[79]

Kalhor R, Kalhor K, Leeper K, Graveline A, Mali P, Church GM. A homing CRISPR mouse resource for barcoding and lineage tracing. 2018. Preprint at bioRxiv:280289.

[80]

Yoon B, Kim H, Jung SW, Park J. Single-cell lineage tracing approaches to track kidney cell development and maintenance. Kidney Int. 2024; 105 (6): 1186- 99.

[81]

Liu K, Deng S, Ye C, Yao Z, Wang J, Gong H, et al. Mapping single-cell-resolution cell phylogeny reveals cell population dynamics during organ development. Nat Methods. 2021; 18 (12): 1506- 14.

[82]

Zhao W, Wang Y, Liang FS. Chemical and light inducible epigenome editing. Int J Mol Sci. 2020; 21 (3): 998.

[83]

Thangaraj A, Kaul R, Sharda S, Kaul T. Revolutionizing cotton cultivation: a comprehensive review of genome editing technologies and their impact on breeding and production. Biochem Biophys Res Commun. 2024; 742: 151084.

[84]

Chakraborty SS, Ray Dutta J, Ganesan R, Minary P. The evolution of nucleic acid-based diagnosis methods from the (pre-) CRISPR to CRISPR era and the associated machine/deep learning approaches in relevant RNA design. Springer; 2014. p. 241- 300.

[85]

Xu W, Zhang S, Qin H, Yao K. From bench to bedside: cutting-edge applications of base editing and prime editing in precision medicine. J Transl Med. 2024; 22 (1): 1- 43.

[86]

Li X, Chen W, Martin BK, Calderon D, Lee C, Choi J, et al. Chromatin context-dependent regulation and epigenetic manipulation of prime editing. Cell. 2024; 187 (10): 2411- 27.

[87]

Kim IS. DNA barcoding technology for lineage recording and tracing to resolve cell fate determination. Cells. 2023; 13 (1): 27.

[88]

Choi J, Chen W, Suiter CC, Lee C, Chardon FM, Yang W, et al. Precise genomic deletions using paired prime editing. Nat Biotechnol. 2022; 40 (2): 218- 26.

[89]

Choudhery MS, Arif T, Mahmood R. Bidirectional prime editing: combining precision with versatility for genome editing. In: Cellular reprogramming; 2024.

[90]

Tao R, Wang Y, Jiao Y, Hu Y, Li L, Jiang L, et al. Bi-PE: bidirectional priming improves CRISPR/Cas9 prime editing in mammalian cells. Nucleic Acids Res. 2022; 50 (11): 6423- 34.

[91]

Zhang L, Zhang S. Comparison of computational methods for imputing single-cell RNA-sequencing data. IEEE ACM Trans Comput Biol Bioinf. 2018; 17 (2): 376- 89.

[92]

Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C. Single-cell mRNA quantification and differential analysis with Census. Nat Methods. 2017; 14 (3): 309- 15.

[93]

Shin J, Berg DA, Zhu Y, Shin JY, Song J, Bonaguidi M, et al. Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell. 2015; 17 (3): 360- 72.

[94]

Ji Z, Ji H. TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 2016; 44 (13): e117.

[95]

Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS, Göttgens B, et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 2019; 20: 1- 9.

[96]

Pandey K, Zafar H. Inference of cell state transitions and cell fate plasticity from single-cell with MARGARET. Nucleic Acids Res. 2022; 50 (15): e86.

[97]

Huguet G, Magruder DS, Tong A, Fasina O, Kuchroo M, Wolf G, et al. Manifold interpolating optimal-transport flows for trajectory inference. Adv Neural Inf Process Syst. 2022; 35: 29705- 18.

[98]

Haghverdi L, Büttner M, Wolf FA, Buettner F, Theis FJ. Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods. 2016; 13 (10): 845- 8.

[99]

Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, Kathail P, et al. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol. 2016; 34 (6): 637- 45.

[100]

Campbell K, Ponting CP, Webber C. Laplacian eigenmaps and principal curves for high resolution pseudotemporal ordering of single-cell RNA-seq profiles. 2015. Preprint at bioRxiv:027219.

[101]

Cannoodt R, Saelens W, Sichien D, Tavernier S, Janssens S, Guilliams M, et al. SCORPIUS improves trajectory inference and identifies novel modules in dendritic cell development. 2016. Preprint at bioRxiv:079509.

[102]

Albergante L, Mirkes EM, Chen H, Martin A, Faure L, Barillot E, et al. Robust and scalable learning of complex dataset topologies via elpigraph. Entropy. 2020; 22 (3): 296.

[103]

Smolander J, Junttila S, Venäläinen MS, Elo LL. scShaper: an ensemble method for fast and accurate linear trajectory inference from single-cell RNA-seq data. Bioinformatics. 2022; 38 (5): 1328- 35.

[104]

Sträatman-Berglund G, Petukhov V, Wolf FA, Buettner F, Theis FJ. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol. 2020; 38 (8): 980- 6.

[105]

Ding J, Lin C, Bar-Joseph Z. Cell lineage inference from SNP and scRNA-Seq data. Nucleic Acids Res. 2019; 47 (10): e56.

[106]

Lu T, Park S, Zhu J, Wang Y, Zhan X, Wang X, et al. Overcoming expressional dropouts in lineage reconstruction from single-cell RNA-sequencing data. Cell Rep. 2021; 34 (1): 108589.

[107]

Cheng J, Smyth GK, Chen Y. Unraveling the timeline of gene expression: a pseudotemporal trajectory analysis of single-cell RNA sequencing data. Research. 2023; 12: 684.

[108]

Cannoodt R, Saelens W, Saeys Y. Computational methods for trajectory inference from single-cell transcriptomics. Eur J Immunol. 2016; 46 (11): 2496- 506.

[109]

Wu W, Zhang W, Ma X. Network-based integrative analysis of single-cell transcriptomic and epigenomic data for cell types. Briefings Bioinf. 2022; 23 (2): bbab546.

[110]

Kégl B, Krzyzak A, Linder T, Zeger K. Learning and design of principal curves. IEEE Trans Pattern Anal Mach Intell. 2000; 22 (3): 281- 97.

[111]

Jones MG, Yang D, Weissman JS. New tools for lineage tracing in cancer in vivo. Annu Rev Cell Biol. 2023; 7 (1): 111- 29.

[112]

Bailey C, Black JR, Reading JL, Litchfield K, Turajlic S, McGranahan N, et al. Tracking cancer evolution through the disease course. Cancer Discov. 2021; 11 (4): 916- 32.

[113]

Tao L, Raz O, Marx Z, Ghosh MS, Huber S, Greindl-Junghans J, et al. Retrospective cell lineage reconstruction in humans by using short tandem repeats. Cell reports methods. 2021; 1 (3): 100054.

[114]

Ludwig LS, Lareau CA, Ulirsch JC, Christian E, Muus C, Li LH, et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell. 2019; 176 (6): 1325- 39.

[115]

Zapata-Valenzuela J, Isik F, Maltecca C, Wegrzyn J, Neale D, McKeand S, et al. SNP markers trace familial linkages in a cloned population of Pinus taeda-prospects for genomic selection. Tree Genet Genomes. 2012; 8 (6): 1307- 18.

[116]

Tarabichi M, Salcedo A, Deshwar AG, Ni Leathlobhair M, Wintersinger J, Wedge DC, et al. A practical guide to cancer subclonal reconstruction from DNA sequencing. Nat Methods. 2021; 18 (2): 144- 55.

[117]

Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, et al. PyClone: statistical inference of clonal population structure in cancer. Nat Methods. 2014; 11 (4): 396- 8.

[118]

Andor N, Harness JV, Mueller S, Mewes HW, Petritsch C. EXPANDS: expanding ploidy and allele frequency on nested subpopulations. Bioinformatics. 2014; 30 (1): 50- 60.

[119]

Wang F, Wang Q, Mohanty V, Liang S, Dou J, Han J, et al. MEDALT: single-cell copy number lineage tracing enabling gene discovery. Genome Biol. 2021; 22: 1- 22.

[120]

Kaufmann TL, Petkovic M, Watkins TB, Colliver EC, Laskina S, Thapa N, et al. MEDICC2: whole-genome doubling aware copy-number phylogenies for cancer evolution. Genome Biol. 2022; 23 (1): 241.

[121]

Markowska M, Cąkała T, Miasojedow B, Aybey B, Juraeva D, Mazur J, et al. CONET: copy number event tree model of evolutionary tumor history for single-cell data. Genome Biol. 2022; 23 (1): 128.

[122]

Guerrero-Juarez CF, Dedhia PH, Jin S, Ruiz-Vega R, Ma D, Liu Y, et al. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nat Commun. 2019; 10 (1): 650.

[123]

Iwayama T, Iwashita M, Miyashita K, Sakashita H, Matsumoto S, Tomita K, et al. Plap-1 lineage tracing and single-cell transcriptomics reveal cellular dynamics in the periodontal ligament. Development. 2022; 149 (19): dev201203.

[124]

Trinh LT, Osipovich AB, Liu B, Shrestha S, Cartailler JP, Wright CVE, et al. Single-cell RNA sequencing of Sox17-expressing lineages reveals distinct gene regulatory networks and dynamic developmental trajectories. Stem Cell. 2023; 41 (6): 643- 57.

[125]

Lange M, Bergen V, Klein M, Setty M, Reuter B, Bakhti M, et al. CellRank for directed single-cell fate mapping. Nat Methods. 2022; 19 (2): 159- 70.

[126]

Wang K, Hou L, Wang X, Zhai X, Lu Z, Zi Z, et al. PhyloVelo enhances transcriptomic velocity field mapping using monotonically expressed genes. Nat Biotechnol. 2024; 42 (5): 778- 89.

[127]

Karras P, Bordeu I, Pozniak J, Nowosad A, Pazzi C, Van Raemdonck N, et al. A cellular hierarchy in melanoma uncouples growth and metastasis. Nature. 2022; 610 (7930): 190- 8.

[128]

Tsubosaka A, Komura D, Kakiuchi M, Katoh H, Onoyama T, Yamamoto A, et al. Stomach encyclopedia: combined single-cell and spatial transcriptomics reveal cell diversity and homeostatic regulation of human stomach. Cell Rep. 2023; 42 (10): 113236.

[129]

Sun Q, Lee W, Hu H, Ogawa T, De Leon S, Katehis I, et al. Dedifferentiation maintains melanocyte stem cells in a dynamic niche. Nature. 2023; 616 (7958): 774- 82.

[130]

Kasmani MY, Zander R, Chung HK, Chen Y, Khatun A, Damo M, et al. Clonal lineage tracing reveals mechanisms skewing CD8+ T cell fate decisions in chronic infection. J Exp Med. 2022; 220 (1): e20220679.

[131]

Weng C, Yu F, Yang D, Poeschla M, Liggett LA, Jones MG, et al. Deciphering cell states and genealogies of human haematopoiesis. Nature. 2024; 627 (8003): 389- 98.

[132]

Correa-Gallegos D, Ye H, Dasgupta B, Sardogan A, Kadri S, Kandi R, et al. CD201+ fascia progenitors choreograph injury repair. Nature. 2023; 623 (7988): 792- 802.

[133]

Liang Y, Chen F, Wang K, Lai L. Base editors: development and applications in biomedicine. Front Med. 2023; 17 (3): 359- 87.

[134]

Gerhardt LM, Koppitch K, Van Gestel J, Guo J, Cho S, Wu H, et al. Lineage tracing and single-nucleus multiomics reveal novel features of adaptive and maladaptive repair after acute kidney injury. J Am Soc Nephrol. 2023; 34 (4): 554- 71.

[135]

Lotto J, Stephan TL, Hoodless PA. Fetal liver development and implications for liver disease pathogenesis. Nat Rev Gastroenterol Hepatol. 2023; 20 (9): 561- 81.

[136]

Yang D, Jones MG, Naranjo S, Rideout WM , Min KHJ, Ho R, et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell. 2022; 185 (11): 1905- 23.

[137]

Pai JA, Hellmann MD, Sauter JL, Mattar M, Rizvi H, Woo HJ, et al. Lineage tracing reveals clonal progenitors and long-term persistence of tumor-specific T cells during immune checkpoint blockade. Cancer Cell. 2023; 41 (4): 776- 90.

[138]

Taylor MA, Kandyba E, Halliwill K, Delrosario R, Khoroshkin M, Goodarzi H, et al. Stem-cell states converge in multistage cutaneous squamous cell carcinoma development. Science. 2024; 384 (6699): eadi7453.

[139]

Zhou L, Yu KHO, Wong TL, Zhang Z, Chan CH, Loong JHC, et al. Lineage tracing and single-cell analysis reveal proliferative Prom1+ tumour-propagating cells and their dynamic cellular transition during liver cancer progression. Gut. 2022; 71 (8): 1656- 68.

[140]

Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 2022; 40 (6): 656- 73.

[141]

Davis A, Gao R, Navin N. Tumor evolution: linear, branching, neutral or punctuated? Biochim Biophys Acta Rev Cancer. 2017; 1867 (2): 151- 61.

[142]

Gutierrez C, Al'Khafaji AM, Brenner E, Johnson KE, Gohil SH, Lin Z, et al. Multifunctional barcoding with ClonMapper enables high-resolution study of clonal dynamics during tumor evolution and treatment. Nature Cancer. 2021; 2 (7): 758- 72.

[143]

Werdyani S, Yu Y, Skardasi G, Xu J, Shestopaloff K, Xu W, et al. Germline INDEL s and CNV s in a cohort of colorectal cancer patients: their characteristics, associations with relapse-free survival time, and potential time-varying effects on the risk of relapse. Cancer Med. 2017; 6 (6): 1220- 32.

[144]

Zucker MR, Abruzzo LV, Herling CD, Barron LL, Keating MJ, Abrams ZB, et al. Inferring clonal heterogeneity in cancer using SNP arrays and whole genome sequencing. Bioinformatics. 2019; 35 (17): 2924- 31.

[145]

Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, et al. SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput Biol. 2014; 10 (8): e1003665.

[146]

Kester L, Barbanson dB, Lyubimova A, Chen LT, van der Schrier V, Alemany A, et al. Integration of multiple lineage measurements from the same cell reconstructs parallel tumor evolution. Cell Genomics. 2022; 2 (2): 100096.

[147]

Sepp M, Leiss K, Murat F, Okonechnikov K, Joshi P, Leushkin E, et al. Cellular development and evolution of the mammalian cerebellum. Nature. 2024; 625 (7996): 788- 96.

[148]

Zhang L, Cavallini M, Wang J, Xin R, Zhang Q, Feng G, et al. Evolutionary and developmental specialization of foveal cell types in the marmoset. Proc Natl Acad Sci. 2024; 121 (16): e2313820121.

[149]

Pan H, Ho SE, Xue C, Cui J, Johanson QS, Sachs N, et al. Atherosclerosis is a smooth muscle cell-driven tumor-like disease. Circulation. 2024; 149 (24): 1885- 98.

[150]

Amrute JM, Luo X, Penna V, Yang S, Yamawaki T, Hayat S, et al. Targeting immune-fibroblast cell communication in heart failure. Nature. 2024; 635 (8038): 1- 11.

[151]

Xi X, Li J, Jia J, Meng Q, Li C, Wang X, et al. A mechanism-informed deep neural network enables prioritization of regulators that drive cell state transitions. Nat Commun. 2025; 16 (1): 1284.

[152]

Vo HK, Dawes JH, Kelsh RN. Oscillatory differentiation dynamics fundamentally restricts the resolution of pseudotime reconstruction algorithms. J R Soc Interface. 2024; 21 (212): 20230537.

[153]

Ma P, Amemiya HM, He LL, Gandhi SJ, Nicol R, Bhattacharyya RP, et al. Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states. Cell. 2023; 186 (4): 877- 91.

[154]

Kuchina A, Brettner LM, Paleologu L, Roco CM, Rosenberg AB, Carignano A, et al. Microbial single-cell RNA sequencing by split-pool barcoding. Science. 2021; 371 (6531): eaba5257.

[155]

Li R, Ferdinand JR, Loudon KW, Bowyer GS, Laidlaw S, Muyas F, et al. Mapping single-cell transcriptomes in the intra-tumoral and associated territories of kidney cancer. Cancer Cell. 2022; 40 (12): 1583- 99.

[156]

Srivatsan SR, Regier MC, Barkan E, Franks JM, Packer JS, Grosjean P, et al. Embryo-scale, single-cell spatial transcriptomics. Science. 2021; 373 (6550): 111- 7.

[157]

Weatherbee BA, Gantner CW, Iwamoto-Stohl LK, Daza RM, Hamazaki N, Shendure J, et al. Pluripotent stem cell-derived model of the post-implantation human embryo. Nature. 2023; 622 (7983): 584- 93.

[158]

Gong X, Liu Y, Liu H, Cao N, Zeng L, Tian M, et al. Re-analysis of single-cell transcriptomics reveals a critical role of macrophage-like smooth muscle cells in advanced atherosclerotic plaque. Theranostics. 2024; 14 (4): 1450- 63.

[159]

Goh T, Song Y, Yonekura T, Obushi N, Den Z, Imizu K, et al. In-depth quantification of cell division and elongation dynamics at the tip of growing arabidopsis roots using 4D microscopy, AI-assisted image processing and data sonification. Plant Cell Physiol. 2023; 64 (11): 1262- 78.

[160]

Zhou R, Tang X, Wang Y. Emerging strategies to investigate the biology of early cancer. Nat Rev Cancer. 2024; 24 (12): 1- 17.

[161]

Majima K, Kojima Y, Minoura K, Abe K, Hirose H, Shimamura T. LineageVAE: reconstructing historical cell states and transcriptomes toward unobserved progenitors. Bioinformatics. 2024; 40 (10): btae520.

[162]

Li Z, Xie D, Ma Y, Zhao C, You S, Yan H, et al. Deep learning-based enhancement of fluorescence labeling for accurate cell lineage tracing during embryogenesis. Bioinformatics. 2024; 40 (11): btae626.

[163]

Waliman M, Johnson RL, Natesan G, Peinado NA, Tan S, Santella A, et al. Automated cell lineage reconstruction using label-free 4D microscopy. Genetics. 2024; 228 (2): iyae135.

[164]

Stein M, Elefteriou F, Busse B, Fiedler IA, Kwon RY, Farrell E, et al. Why animal experiments are still indispensable in bone research: a statement by the European Calcified Tissue Society. J Bone Miner Res. 2023; 38 (8): 1045- 61.

[165]

Espinosa-Medina I, Feliciano D, Belmonte-Mateos C, Linda Miyares R, Garcia-Marques J, Foster B, et al. TEMPO enables sequential genetic labeling and manipulation of vertebrate cell lineages. Neuron. 2023; 111 (3): 345- 61.

RIGHTS & PERMISSIONS

The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (1286KB)

1084

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/