A data-driven sliding-window pairwise comparative approach for the estimation of transmission fitness of SARS-CoV-2 variants and construction of the evolution fitness landscape

Md Jubair Pantho , Richard Annan , Landen Alexander Bauder , Sophia Huang , Letu Qingge , Hong Qin

Quant. Biol. ›› 2025, Vol. 13 ›› Issue (4) : e70003

PDF (1561KB)
Quant. Biol. ›› 2025, Vol. 13 ›› Issue (4) : e70003 DOI: 10.1002/qub2.70003
RESEARCH ARTICLE

A data-driven sliding-window pairwise comparative approach for the estimation of transmission fitness of SARS-CoV-2 variants and construction of the evolution fitness landscape

Author information +
History +
PDF (1561KB)

Abstract

Estimating the transmission fitness of SARS-CoV-2 variants and understanding their evolutionary fitness trends are important for epidemiological forecasting. Existing methods are often constrained by their parametric natures and do not satisfactorily align with the observations during COVID-19. Here, we introduce a sliding-window data-driven pairwise comparison method, the differential population growth rate (DPGR) that uses viral strains as internal controls to mitigate sampling biases. DPGR is applicable in time windows in which the logarithmic ratio of two variant subpopulations is approximately linear. We apply DPGR to genomic surveillance data and focus on variants of concern (VOCs) in multiple countries and regions. We found that the log-linear assumption of DPGR can be reliably found within appropriate time windows in many areas. We show that DPGR estimates of VOCs align well with regional empirical observations in different countries. We show that DPGR estimates agree with another method for estimating pathogenic transmission. Furthermore, DPGR allowed us to construct viral relative fitness landscapes that capture the shifting trends of SARS-CoV-2 evolution, reflecting the relative changes of transmission traits for key genotypic changes represented by major variants. The straightforward log-linear regression approach of DPGR may also facilitate its easy adoption. This study shows that DPGR is a promising new tool in our repertoire for addressing future pandemics.

Keywords

fitness landscape / pairwise comparative estimation / SARS-CoV-2 / sliding-windows / viral variant fitness

Cite this article

Download citation ▾
Md Jubair Pantho, Richard Annan, Landen Alexander Bauder, Sophia Huang, Letu Qingge, Hong Qin. A data-driven sliding-window pairwise comparative approach for the estimation of transmission fitness of SARS-CoV-2 variants and construction of the evolution fitness landscape. Quant. Biol., 2025, 13(4): e70003 DOI:10.1002/qub2.70003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SunJ, HeWT, WangL, Lai A, JiX, ZhaiX, et al. COVID-19: epidemiology, evolution, and cross-disciplinary perspectives. Trends Mol Med. 2020;26(5):483–95.

[2]

QinL, MengJ, DingX, Jiang T. Mapping genetic events of SARS-CoV-2 variants. Front Microbiol. 2022;13.

[3]

VolzE. Fitness, growth and transmissibility of SARS-CoV-2 genetic variants. Nat Rev Genet. 2023;24(10):724–34.

[4]

ChoiJY, SmithDM. SARS-CoV-2 variants of concern. Yonsei Med J. 2021;62(11):961–8.

[5]

SanyaoluA, OkorieC, MarinkovicA, Haider N, AbbasiAF, JaferiU, et al. The emerging SARS-CoV-2 variants of concern. Ther Adv Infect Dis. 2021;8:20499361211024372.

[6]

MahaseV, Sobitan A, YaoQ, ShiX, QinH, KidaneD, et al. Impact of missense mutations on spike protein stability and binding affinity in the omicron variant. Viruses. 2024;16(7):1150.

[7]

DelamaterPL, StreetEJ, LeslieTF, Yang YT, JacobsenKH. Complexity of the basic reproduction number (R(0)). Emerg Infect Dis. 2019;25:1–4.

[8]

Caicedo-OchoaY, Rebellón-Sánchez DE, Peñaloza-Rallón M, Cortés-MottaHF, Méndez-FandiñoYR. Effective Reproductive Number estimation for initial stage of COVID-19 pandemic in Latin American Countries. Int J Infect Dis. 2020;95:316–8.

[9]

GosticKM, McGough L, BaskervilleEB, AbbottS, JoshiK, TedijantoC, et al. Practical considerations for measuring the effective reproductive number, Rt. PLOS Computational Biology. 2020;16(12):e1008409.

[10]

RochmanND, FaureG, WolfYI, Freddolino PL, ZhangF, KooninEV. Epistasis at the SARS-CoV-2 receptor-binding domain interface and the propitiously boring implications for vaccine escape. mBio. 2022;13(2).

[11]

MorelB, Barbera P, CzechL, BettisworthB, Hübner L, LutteroppS, et al. Phylogenetic analysis of SARS-CoV-2 data is difficult. Mol Biol Evol. 2020;38(5):1777–91.

[12]

HamedSM, Elkhatib WF, KhairallaAS, NoreddinAM. Global dynamics of SARS-CoV-2 clades and their relation to COVID- 19 epidemiology. Sci Rep. 2021;11(1):8435.

[13]

MallapatyS. Where did Omicron come from? Three key theories. Nature. 2022;602(7895):26–8.

[14]

ObermeyerF, Jankowiak M, BarkasN, SchaffnerSF, PyleJD, YurkovetskiyL, et al. Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness. Science. 2022;376(6599):1327–32.

[15]

AbousamraE, Figgins M, BedfordT. Fitness models provide accurate short-term forecasts of SARS-CoV-2 variant frequency; 2024. Preprint at medRxiv, 2023.11.30.23299240.

[16]

van DorpC, Goldberg E, KeR, HengartnerN, Romero-Severson E. Global estimates of the fitness advantage ofSARS-CoV-2 variant Omicron. Virus Evol. 2022;8(2):veac089.

[17]

SussweinZ, Johnson KE, KassaR, ParastaranM, PengV, WolanskyL, et al. Leveraging global genomic sequencing data to estimate local variant dynamics; 2023. Preprint at medRxiv, 2023.01.02.23284123.

[18]

ShuY, McCauley J. GISAID: Global initiative on sharing all influenza data – from vision to reality. Euro Surveill. 2017; 22(13).

[19]

RambautA, HolmesEC, O’TooleÁ, HillV, McCrone JT, RuisC, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. 2020;5(11):1403–7.

[20]

CallawayE. What Omicron’s BA.4 and BA.5 variants mean for the pandemic. Nature. 2022;606(7916):848–9.

[21]

CaoY, WangJ, JianF, Xiao T, SongW, YisimayiA, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature. 2021;602(7898):657–63.

[22]

SaitouN, NeiM. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4(4):406–25.

[23]

ChatterjeeS, Bhattacharya M, NagS, DhamaK, Chakraborty C. A detailed overview of SARS-CoV-2 omicron: its subvariants, mutations and pathophysiology, clinical characteristics, immunological landscape, immune escape, and therapies. Viruses. 2023;15(1):167.

[24]

WrightS. The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Sixth international congress on genetics 1; 1932.

[25]

FragataI, Blanckaert A, LouroMAD, LiberlesDA, BankC. Evolution in the light of fitness landscape theory. Trends Ecol Evol. 2018;34:69–82.

[26]

SchusterP, Stadler PF. Virus evolution on fitness landscapes. In: Current topics in microbiology and immunology; 2023.

[27]

ElenaSF, Agudelo-Romero P, LalicJ. The evolution of viruses in multi-host fitness landscapes. Open Virol J. 2009;3(1):1–6.

[28]

RotemA, Serohijos AWR, ChangCB, WolfeJT, Fischer AE, MehokeTS, et al. Evolution on the biophysical fitness landscape of an RNA virus. Mol Biol Evol. 2018;35(10):2390–400.

[29]

TsetsarkinKA, ChenR, YunR, RossiSL, PlanteKS, Guerbois M, et al. Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat Commun. 2014; 5(1):4084.

[30]

AcevedoA, Brodsky L, AndinoR. Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature. 2014;505(7485):686–90.

[31]

DoudMB, GuptaA, LiV, Medina SJ,DeLa Fuente CA, MeyerJR. Competition-driven eco-evolutionary feedback reshapes bacteriophage lambda’s fitness landscape and enables speciation. Nat Commun. 2024;15(1):863.

[32]

WangL, BergerNA, KaelberDC, Davis PB, VolkowND, XuR. Incidence rates and clinical outcomes of SARS-CoV-2 infection with the omicron and Delta variants in children younger than 5 Years in the US. JAMA Pediatr. 2022;176(8):811.

[33]

SmithTP, MishraS, DorigattiI, Dixit MK, TristemM, PearseWD. Differential responses ofSARS-CoV-2 variants to environmental drivers during their selective sweeps. Sci Rep. 2024;14(1): 13326.

[34]

TengS, Sobitan A, RhoadesR, LiuD, TangQ. Systemic effects of missense mutations on SARS-CoV-2 spike glycoprotein stability and receptor-binding affinity. Briefings Bioinf. 2020;22(2):1239–53.

[35]

NiemiMEK, DalyMJ, GannaA. The human genetic epidemiology of COVID-19. Nat Rev Genet. 2022;23, 533-46.

[36]

LiangS, BaoC, YangZ, Liu S, SunY, CaoW, et al. SARSCoV- 2 spike protein induces IL-18-mediated cardiopulmonary inflammation via reduced mitophagy. Signal Transduct Targeted Ther. 2023;8(1):108.

[37]

HuY, Lewandowski EM, TanH, ZhangX, MorganRT, ZhangX, et al. Naturally occurring mutations of SARS-CoV-2 main protease confer drug resistance to Nirmatrelvir. ACS Cent Sci. 2023;9(8):1658–69.

[38]

LambKD, LukaMM, SaathoffM, Orton RJ, PhanMVT, CottenM, et al. Mutational signature dynamics indicate SARS-CoV-2’s evolutionary capacity is driven by host antiviral molecules. PLoS Comput Biol. 2024;20(1):e1011795.

[39]

OuJ, Lewandowski EM, HuY, LipinskiAA, Aljasser A, Colon-AscanioM, et al. A yeast-based system to study SARSCoV-2 Mpro structure and to identify nirmatrelvir resistant mutations. PLoS Pathogens. 2023;19(8):e1011592.

RIGHTS & PERMISSIONS

2025 The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (1561KB)

305

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/