Hierarchical learning of gastric cancer molecular subtypes by integrating multi-modal DNA-level omics data and clinical stratification
Binyu Yang, Siying Liu, Jiemin Xie, Xi Tang, Pan Guan, Yifan Zhu, Xuemei Liu, Yunhui Xiong, Zuli Yang, Weiyao Li, Yonghua Wang, Wen Chen, Qingjiao Li, Li C. Xia
Hierarchical learning of gastric cancer molecular subtypes by integrating multi-modal DNA-level omics data and clinical stratification
Molecular subtyping of gastric cancer (GC) aims to comprehend its genetic landscape. However, the efficacy of current subtyping methods is hampered by their mixed use of molecular features, a lack of strategy optimization, and the limited availability of public GC datasets. There is a pressing need for a precise and easily adoptable subtyping approach for early DNA-based screening and treatment. Based on TCGA subtypes, we developed a novel DNA-based hierarchical classifier for gastric cancer molecular subtyping (HCG), which employs gene mutations, copy number aberrations, and methylation patterns as predictors. By incorporating the closely related esophageal adenocarcinomas dataset, we expanded the TCGA GC dataset for the training and testing of HCG (n = 453). The optimization of HCG was achieved through three hierarchical strategies using Lasso-Logistic regression, evaluated by their overall the area under receiver operating characteristic curve (auROC), accuracy, F1 score, the area under precision-recall curve (auPRC) and their capability for clinical stratification using multivariate survival analysis. Subtype-specific DNA alteration biomarkers were discerned through difference tests based on HCG defined subtypes. Our HCG classifier demonstrated superior performance in terms of overall auROC (0.95), accuracy (0.88), F1 score (0.87) and auPRC (0.86), significantly improving the clinical stratification of patients (overall p-value = 0.032). Difference tests identified 25 subtype-specific DNA alterations, including a high mutation rate in the SYNE1, ITGB4, and COL22A1 genes for the MSI subtype, and hypermethylation of ALS2CL, KIAA0406, and RPRD1B genes for the EBV subtype. HCG is an accurate and robust classifier for DNA-based GC molecular subtyping with highly predictive clinical stratification performance. The training and test datasets, along with the analysis programs of HCG, are accessible on the GitHub website (github.com/LabxSCUT).
DNA alterations / gastric cancer / hierarchical classification / molecular subtyping / multi-omics
[1] |
Smyth EC , Nilsson M , Grabsch HI , van Grieken NC , Lordick F . Gastric cancer. Lancet. 2020; 396 (10251): 635- 48.
CrossRef
Google scholar
|
[2] |
Gao J-P , Xu W , Liu W-T , Yan M , Zhu Z-G . Tumor heterogeneity of gastric cancer: from the perspective of tumor-initiating cell. World J Gastroenterol. 2018; 24: 2567- 81.
CrossRef
Google scholar
|
[3] |
Li L , Wang X . Identification of gastric cancer subtypes based on pathway clustering. NPJ Precis Oncol. 2021; 5 (1): 46.
CrossRef
Google scholar
|
[4] |
Alsina M , Gullo I , Carneiro F . Intratumoral heterogeneity in gastric cancer: a new challenge to face. Ann Oncol. 2017; 28 (5): 912- 3.
CrossRef
Google scholar
|
[5] |
Borrmann R . Geschwülste des magens und duodenums. Verdauungsschlauch: Rachen and Tonsillen; Speiseröhre; Magen and Darm; Bauchfell. Springer Vienna. 1926: 812- 1054.
CrossRef
Google scholar
|
[6] |
Lauren P . The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965; 64 (1): 31- 49.
CrossRef
Google scholar
|
[7] |
Garattini SK , Basile D , Cattaneo M , Fanotto V , Ongaro E , Bonotto M , et al. Molecular classifications of gastric cancers: novel insights and possible future applications. World J Gastrointest Oncol. 2017; 9 (5): 194- 208.
CrossRef
Google scholar
|
[8] |
Serra O , Galán M , Ginesta MM , Calvo M , Sala N , Salazar R . Comparison and applicability of molecular classifications for gastric cancer. Cancer Treat Rev. 2019; 77: 29- 34.
CrossRef
Google scholar
|
[9] |
Wang Q , Liu G , Hu C . Molecular classification of gastric adenocarcinoma. Gastroenterology Res. 2019; 12 (6): 275- 82.
CrossRef
Google scholar
|
[10] |
Lei Z , Tan IB , Das K , Deng N , Zouridis H , Pattison S , et al. Identification of molecular subtypes of gastric cancer with different responses to pi3-kinase inhibitors and 5-fluorouracil. Gastroenterology. 2013; 145 (3): 554- 65.
CrossRef
Google scholar
|
[11] |
Network CGAR . Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014; 513 (7517): 202- 9.
CrossRef
Google scholar
|
[12] |
Katona BW , Rustgi AK . Gastric cancer genomics: advances and future directions. Cell Mol Gastroenter. 2017; 3 (2): 211- 7.
CrossRef
Google scholar
|
[13] |
Sohn BH , Hwang J-E , Jang H-J , Lee H-S , Oh SC , Shim J-J , et al. Clinical significance of four molecular subtypes of gastric cancer identified by the cancer genome atlas project. Clin Cancer Res. 2017; 23 (15): 4441- 9.
CrossRef
Google scholar
|
[14] |
Nshizirungu JP , Bennis S , Mellouki I , Sekal M , Benajah D-A , Lahmidani N , et al. Reproduction of the cancer genome atlas (TCGA) and Asian cancer research group (ACRG) gastric cancer molecular classifications and their association with clinicopathological characteristics and overall survival in Moroccan patients. Dis Markers. 2021; 2021: 1- 12.
CrossRef
Google scholar
|
[15] |
Wörheide MA , Krumsiek J , Kastenmüller G , Arnold M . Multi-omics integration in biomedical research—a metabolomics-centric review. Anal Chim Acta. 2021; 1141: 144- 62.
CrossRef
Google scholar
|
[16] |
Pinu FR , Beale DJ , Paten AM , Kouremenos K , Swarup S , Schirra HJ , et al. Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites. 2019; 9 (4): 76.
CrossRef
Google scholar
|
[17] |
Voillet V , Besse P , Liaubet L , San Cristobal M , González I . Handling missing rows in multi-omics data integration: multiple imputation in multiple factor analysis framework. BMC Bioinf. 2016; 17: 1- 16.
CrossRef
Google scholar
|
[18] |
Röcken C . Molecular classification of gastric cancer. Expert Rev Mol Diagn. 2017; 17 (3): 293- 301.
CrossRef
Google scholar
|
[19] |
Liu C , Duan Y , Zhou Q , Wang Y , Gao Y , Kan H , et al. A classification method of gastric cancer subtype based on residual graph convolution network. Front Genet. 2022; 13.
CrossRef
Google scholar
|
[20] |
Raser JM , O'shea EK . Noise in gene expression: origins, consequences, and control. Science. 2005; 309 (5743): 2010- 3.
CrossRef
Google scholar
|
[21] |
Zhou Q , Yuan Y , Lu H , Li X , Liu Z , Gan J , et al. Cancer functional states-based molecular subtypes of gastric cancer. J Transl Med. 2023; 21 (1): 80.
CrossRef
Google scholar
|
[22] |
Tahara T , Tahara S , Horiguchi N , Okubo M , Terada T , Yamada H , et al. Molecular subtyping of gastric cancer combining genetic and epigenetic anomalies provides distinct clinicopathological features and prognostic impacts. Hum Mutat. 2019; 40 (3): 347- 54.
CrossRef
Google scholar
|
[23] |
Lian Q , Wang B , Fan L , Sun J , Wang G , Zhang J . DNA methylation data-based molecular subtype classification and prediction in patients with gastric cancer. Cancer Cell Int. 2020; 20 (1): 349.
CrossRef
Google scholar
|
[24] |
Cristescu R , Lee J , Nebozhyn M , Kim K-M , Ting JC , Wong SS , et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015; 21 (5): 449- 56.
CrossRef
Google scholar
|
[25] |
Sanchez-Vega F , Mina M , Armenia J , Chatila WK , Luna A , La KC , et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018; 173 (2): 321- 37.
CrossRef
Google scholar
|
[26] |
Coleman HG , Xie S-H , Lagergren J . The epidemiology of esophageal adenocarcinoma. Gastroenterology. 2018; 154 (2): 390- 405.
CrossRef
Google scholar
|
[27] |
Crick F . Central dogma of molecular biology. Nature. 1970; 227 (5258): 561- 3.
CrossRef
Google scholar
|
[28] |
Watson JD , Crick FH . Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature. 1953; 171 (4356): 737- 8.
CrossRef
Google scholar
|
[29] |
Franklin RE , Gosling RG . Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate. Nature. 1953; 172 (4369): 156- 7.
CrossRef
Google scholar
|
[30] |
Breslauer KJ , Frank R , Blöcker H , Marky LA . Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci USA. 1986; 83 (11): 3746- 50.
CrossRef
Google scholar
|
[31] |
Kool ET , Morales JC , Guckian KM . Mimicking the structure and function of DNA: insights into DNA stability and replication. Angew Chem Int Ed. 2000; 39 (6): 990- 1009.
CrossRef
Google scholar
|
[32] |
Li X , Wu WKK , Xing R , Wong SH , Liu Y , Fang X , et al. Distinct subtypes of gastric cancer defined by molecular characterization include novel mutational signatures with prognostic capability. Cancer Res. 2016; 76 (7): 1724- 32.
CrossRef
Google scholar
|
[33] |
Usui G , Matsusaka K , Mano Y , Urabe M , Funata S , Fukayama M , et al. DNA methylation and genetic aberrations in gastric cancer. Digestion. 2021; 102 (1): 25- 32.
CrossRef
Google scholar
|
[34] |
Zhao L , Lee VH , Ng MK , Yan H , Bijlsma MF . Molecular subtyping of cancer: current status and moving toward clinical applications. Briefings Bioinf. 2019; 20 (2): 572- 84.
CrossRef
Google scholar
|
[35] |
Hayakawa Y , Sethi N , Sepulveda AR , Bass AJ , Wang TC . Oesophageal adenocarcinoma and gastric cancer: should we mind the gap? Nat Rev Cancer. 2016; 16 (5): 305- 18.
CrossRef
Google scholar
|
[36] |
Salem ME , Puccini A , Xiu J , Raghavan D , Lenz HJ , Korn WM , et al. Comparative molecular analyses of esophageal squamous cell carcinoma, esophageal adenocarcinoma, and gastric adenocarcinoma. Oncol. 2018; 23 (11): 1319- 27.
CrossRef
Google scholar
|
[37] |
Shankaran V , Xiao H , Bertwistle D , Zhang Y , You M , Abraham P , et al. A comparison of real-world treatment patterns and clinical outcomes in patients receiving first-line therapy for unresectable advanced gastric or gastroesophageal junction cancer versus esophageal adenocarcinomas. Adv Ther. 2021; 38 (1): 707- 20.
CrossRef
Google scholar
|
[38] |
Chawla NV , Bowyer KW , Hall LO , Kegelmeyer WP . Smote: synthetic minority over-sampling technique. J Artif Intell Res. 2002; 16: 321- 57.
CrossRef
Google scholar
|
[39] |
Ratti M , Lampis A , Hahne JC , Passalacqua R , Valeri N . Microsatellite instability in gastric cancer: molecular bases, clinical perspectives, and new treatment approaches. Cell Mol Life Sci. 2018; 75 (22): 4151- 62.
CrossRef
Google scholar
|
[40] |
Wang K , Yuen ST , Xu J , Lee SP , Yan HH , Shi ST , et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014; 46 (6): 573- 82.
CrossRef
Google scholar
|
[41] |
Rajagopalan H , Nowak MA , Vogelstein B , Lengauer C . The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer. 2003; 3 (9): 695- 701.
CrossRef
Google scholar
|
[42] |
Geigl JB , Obenauf AC , Schwarzbraun T , Speicher MR . Defining ‘chromosomal instability’. Trends Genet. 2008; 24 (2): 64- 9.
CrossRef
Google scholar
|
[43] |
Ling Y , Watanabe Y , Nagahashi M , Shimada Y , Ichikawa H , Wakai T , et al. Genetic profiling for diffuse type and genomically stable subtypes in gastric cancer. Comput Struct Biotechnol J. 2020; 18: 3301- 8.
CrossRef
Google scholar
|
[44] |
Jácome AAdA , Lima EMd , Kazzi AI , Chaves GF , Mendonça DCd , Maciel MM , et al. Epstein-Barr virus-positive gastric cancer: a distinct molecular subtype of the disease? Rev Soc Bras Med Trop. 2016; 49 (2): 150- 7.
CrossRef
Google scholar
|
[45] |
Luo W , Fedda F , Lynch P , Tan D . Cdh1 gene and hereditary diffuse gastric cancer syndrome: molecular and histological alterations and implications for diagnosis and treatment. Front Pharmacol. 2018; 9: 1421.
CrossRef
Google scholar
|
[46] |
Imai K , Hirata S , Irie A , Senju S , Ikuta Y , Yokomine K , et al. Identification of a novel tumor-associated antigen, cadherin 3/p-cadherin, as a possible target for immunotherapy of pancreatic, gastric, and colorectal cancers. Clin Cancer Res. 2008; 14 (20): 6487- 95.
CrossRef
Google scholar
|
[47] |
Zhang H , Ma R , Wang X , Su Z , Chen X , Shi D , et al. Kif26b, a novel oncogene, promotes proliferation and metastasis by activating the vegf pathway in gastric cancer. Oncogene. 2017; 36 (40): 5609- 19.
CrossRef
Google scholar
|
[48] |
Qi M , Jiao M , Li X , Hu J , Wang L , Zou Y , et al. Cul4b promotes gastric cancer invasion and metastasis-involvement of upregulation of her2. Oncogene. 2018; 37 (8): 1075- 85.
CrossRef
Google scholar
|
[49] |
O'Donovan KJ , Diedler J , Couture GC , Fak JJ , Darnell RB . The onconeural antigen cdr2 is a novel apc/c target that acts in mitosis to regulate c-myc target genes in mammalian tumor cells. PLoS One. 2010; 5 (4): e10045.
CrossRef
Google scholar
|
[50] |
Li Y , Liu Z , Zhang Y . Expression and prognostic impact of fzds in pancreatic adenocarcinoma. BMC Gastroenterol. 2021; 21 (1): 79.
CrossRef
Google scholar
|
[51] |
Di Bartolomeo M , Morano F , Raimondi A , Miceli R , Corallo S , Tamborini E , et al. Prognostic and predictive value of microsatellite instability, inflammatory reaction and pd-l1 in gastric cancer patients treated with either adjuvant 5-fu/lv or sequential folfiri followed by cisplatin and docetaxel: a translational analysis from the itaca-s trial. Oncol. 2020; 25 (3): e460- 8.
CrossRef
Google scholar
|
[52] |
Hinata M , Ushiku T . Detecting immunotherapy-sensitive subtype in gastric cancer using histologic image-based deep learning. Sci Rep. 2021; 11 (1): 22636.
CrossRef
Google scholar
|
[53] |
Nusse R , Clevers H . Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017; 169 (6): 985- 99.
CrossRef
Google scholar
|
[54] |
Nakano A , Pulkkinen L , Murrell D , Rico J , Lucky AW , Garzon M , et al. Epidermolysis bullosa with congenital pyloric atresia: novel mutations in the β4 integrin gene (itgb4) and genotype/phenotype correlations. Pediatr Res. 2001; 49 (5): 618- 26.
CrossRef
Google scholar
|
[55] |
Rima M , Daghsni M , Lopez A , Fajloun Z , Lefrancois L , Dunach M , et al. Down-regulation of the wnt/β-catenin signaling pathway by cacnb4. Mol Biol Cell. 2017; 28 (25): 3699- 708.
CrossRef
Google scholar
|
[56] |
Wang J , Li R , He Y , Yi Y , Wu H , Liang Z . Next-generation sequencing reveals heterogeneous genetic alterations in key signaling pathways of mismatch repair deficient colorectal carcinomas. Mod Pathol. 2020; 33 (12): 2591- 601.
CrossRef
Google scholar
|
[57] |
Chen Z-H , Yan S-M , Chen X-X , Zhang Q , Liu S-X , Liu Y , et al. The genomic architecture of ebv and infected gastric tissue from precursor lesions to carcinoma. Genome Med. 2021; 13: 1- 22.
CrossRef
Google scholar
|
[58] |
Jia Y , Yan Q , Zheng Y , Li L , Zhang B , Chang Z , et al. Long non-coding rna neat1 mediated rprd1b stability facilitates fatty acid metabolism and lymph node metastasis via c-jun/c-fos/srebp1 axis in gastric cancer. J Exp Clin Cancer Res. 2022; 41: 1- 20.
CrossRef
Google scholar
|
[59] |
Hurov KE , Cotta-Ramusino C , Elledge SJ . A genetic screen identifies the triple t complex required for DNA damage signaling and atm and atr stability. Gene Dev. 2010; 24 (17): 1939- 50.
CrossRef
Google scholar
|
[60] |
Higgins MJ , Baselga J . Targeted therapies for breast cancer. J Clin Investig. 2011; 121 (10): 3797- 803.
CrossRef
Google scholar
|
[61] |
Roepman P , Schlicker A , Tabernero J , Majewski I , Tian S , Moreno V , et al. Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition. Int J Cancer. 2014; 134 (3): 552- 62.
CrossRef
Google scholar
|
[62] |
Li T , Kung H-J , Mack PC , Gandara DR . Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J Clin Oncol. 2013; 31 (8): 1039- 49.
CrossRef
Google scholar
|
[63] |
Ahn S , Lee S-J , Kim Y , Kim A , Shin N , Choi KU , et al. High-throughput protein and mrna expression-based classification of gastric cancers can identify clinically distinct subtypes, concordant with recent molecular classifications. Am J Surg Pathol. 2017; 41 (1): 106- 15.
CrossRef
Google scholar
|
[64] |
Bonev B , Cavalli G . Organization and function of the 3D genome. Nat Rev Genet. 2016; 17 (11): 661- 78.
CrossRef
Google scholar
|
[65] |
Buitrago D , Labrador M , Arcon JP , Lema R , Flores O , Esteve-Codina A , et al. Impact of DNA methylation on 3D genome structure. Nat Commun. 2021; 12 (1): 3243.
CrossRef
Google scholar
|
[66] |
Pretzsch E , Bösch F , Todorova R , Nieß H , Jacob S , Guba M , et al. Molecular subtyping of gastric cancer according to acrg using immunohistochemistry-correlation with clinical parameters. Pathol Res Pract. 2022; 231: 153797.
CrossRef
Google scholar
|
[67] |
Ramos MFKP , Pereira MA , de Mello ES , dos Santos Cirqueira C , Zilberstein B , Alves VAF , et al. Gastric cancer molecular classification based on immunohistochemistry and in situ hybridization: analysis in western patients after curative-intent surgery. World J Clin Oncol. 2021; 12 (8): 688- 701.
CrossRef
Google scholar
|
[68] |
Khushman Md , Patel GK , Maharjan AS , McMillin GA , Nelson C , Hosein P , et al. The prevalence and clinical relevance of 2r/2r tyms genotype in patients with gastrointestinal malignancies treated with fluoropyrimidine-based chemotherapy regimens. Pharmacogenomics J. 2021; 21 (3): 308- 17.
CrossRef
Google scholar
|
[69] |
Chao J , Fuchs CS , Shitara K , Tabernero J , Muro K , Van Cutsem E , et al. Assessment of pembrolizumab therapy for the treatment of microsatellite instability-high gastric or gastroesophageal junction cancer among patients in the keynote-059, keynote-061, and keynote-062 clinical trials. JAMA Oncol. 2021; 7 (6): 895- 902.
CrossRef
Google scholar
|
[70] |
Kim SY , Choi YY , An JY , Shin HB , Jo A , Choi H , et al. The benefit of microsatellite instability is attenuated by chemotherapy in stage ii and stage iii gastric cancer: results from a large cohort with subgroup analyses. Int J Cancer. 2015; 137 (4): 819- 25.
CrossRef
Google scholar
|
[71] |
Cai Z , Rui W , Li S , Fingerhut A , Sun J , Ma J , et al. Microsatellite status affects tumor response and survival in patients undergoing neoadjuvant chemotherapy for clinical stage iii gastric cancer. Front Oncol. 2020; 10: 614785.
CrossRef
Google scholar
|
[72] |
Chen S , Gan M , Lv H , Jiang R . Deepcape: a deep convolutional neural network for the accurate prediction of enhancers. Dev Reprod Biol. 2021; 19: 565- 77.
CrossRef
Google scholar
|
[73] |
Chen S , Liu Q , Cui X , Feng Z , Li C , Wang X , et al. Openannotate: a web server to annotate the chromatin accessibility of genomic regions. Nucleic Acids Res. 2021; 49: W483- 90.
CrossRef
Google scholar
|
[74] |
Cerami E , Gao J , Dogrusoz U , Gross BE , Sumer SO , Aksoy BA , et al. The CBIO cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012; 2: 401- 4.
CrossRef
Google scholar
|
[75] |
Fleischer T , Frigessi A , Johnson KC , Edvardsen H , Touleimat N , Klajic J , et al. Genome-wide DNA methylation profiles in progression to in situand invasive carcinoma of the breast with impact on gene transcription and prognosis. Genome Biol. 2014; 15: 1- 13.
CrossRef
Google scholar
|
[76] |
Suh Y-S , Na D , Lee J-S , Chae J , Kim E , Jang G , et al. Comprehensive molecular characterization of adenocarcinoma of the gastroesophageal junction between esophageal and gastric adenocarcinomas. Ann Surg. 2022; 275: 706- 17.
CrossRef
Google scholar
|
[77] |
Yang X , Gao L , Zhang S . Comparative pan-cancer DNA methylation analysis reveals cancer common and specific patterns. Briefings Bioinf. 2017; 18: 761- 73.
CrossRef
Google scholar
|
/
〈 | 〉 |