DDI-Transform: A neural network for predicting drug-drug interaction events

Jiaming Su, Ying Qian

PDF(563 KB)
PDF(563 KB)
Quant. Biol. ›› 2024, Vol. 12 ›› Issue (2) : 155-163. DOI: 10.1002/qub2.44
RESEARCH ARTICLE

DDI-Transform: A neural network for predicting drug-drug interaction events

Author information +
History +

Abstract

Drug-drug interaction (DDI) event prediction is a challenging problem, and accurate prediction of DDI events is critical to patient health and new drug development. Recently, many machine learning-based techniques have been proposed for predicting DDI events. However, most of the existing methods do not effectively integrate the multidimensional features of drugs and provide poor mitigation of noise to get effective feature information. To address these limitations, we propose a DDI-Transform neural network framework for DDI event prediction. In DDI-Transform, we design a drug structure information feature extraction module and a drug bind-protein feature extraction module to obtain multidimensional feature information. A stack of DDI-Transform layers in the DDI-Transform network module are then used for adaptive learning, thus adaptively selecting the effective feature information for prediction. The results show that DDI-Transform can accurately predict DDI events and outperform the state-of-the-art models. Results on different scale datasets confirm the robustness of the method.

Keywords

adaptive learning / graph convolutional networks / interaction prediction / meta-path

Cite this article

Download citation ▾
Jiaming Su, Ying Qian. DDI-Transform: A neural network for predicting drug-drug interaction events. Quant. Biol., 2024, 12(2): 155‒163 https://doi.org/10.1002/qub2.44

References

[1]
Lin X , Quan Z , Wang ZJ , Ma T , Zeng X . KGNN: knowledge graph neural network for drug-drug interaction prediction. IJCAI. 2020; 380: 2739- 45.
CrossRef Google scholar
[2]
Deac A , Huang YH , Veličković P , Liò P , Tang J . Drug-drug adverse effect prediction with graph co-attention; 2019. arXiv: 1905.00534.
[3]
Takeda T , Hao M , Cheng T , Bryant SH , Wang Y . Predicting drug-drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge. J Cheminf. 2017; 9 (1): 1- 9.
CrossRef Google scholar
[4]
Deepika SS , Geetha TV . A meta-learning framework using representation learning to predict drug-drug interaction. J Biomed Inf. 2018; 84: 136- 47.
CrossRef Google scholar
[5]
Deng Y , Xu X , Qiu Y , Xia J , Zhang W , Liu S . A multimodal deep learning framework for predicting drug-drug interaction events. Bioinformatics. 2020; 36 (15): 4316- 22.
CrossRef Google scholar
[6]
Sahu SK , Anand A . Drug-drug interaction extraction from biomedical texts using long short-term memory network. J Biomed Inf. 2018; 86: 15- 24.
CrossRef Google scholar
[7]
Ma T , Xiao C , Zhou J , Wang F . Drug similarity integration through attentive multi-view graph auto-encoders; 2018. arXiv: 1804.10850.
CrossRef Google scholar
[8]
Huang K , Xiao C , Hoang T , Glass L , Sun J . Caster: predicting drug interactions with chemical substructure representation; 2020. arXiv:1911.06446.
CrossRef Google scholar
[9]
Zhang P , Wang F , Hu J , Sorrentino R . Label propagation prediction of drug-drug interactions based on clinical side effects. Sci Rep. 2015; 5 (1): 12339.
CrossRef Google scholar
[10]
Tari L , Anwar S , Liang S , Cai J , Baral C . Discovering drug-drug interactions: a text-mining and reasoning approach based on properties of drug metabolism. Bioinformatics. 2010; 26 (18): i547- 53.
CrossRef Google scholar
[11]
Sun M , Wang F , Elemento O , Zhou J . Structure-based drug-drug interaction detection via expressive graph convolutional networks and deep sets (student abstract). Proc AAAI Conf Artif Intell. 2020; 34 (10): 13927- 8.
CrossRef Google scholar
[12]
Yu Y , Huang K , Zhang C , Glass LM , Sun J , Xiao C . SumGNN: multi-typed drug interaction prediction via efficient knowledge graph summarization. Bioinformatics. 2021; 37 (18): 2988- 95.
CrossRef Google scholar
[13]
Lin S , Wang Y , Zhang L , Chu Y , Liu Y , Fang Y , et al. MDF-SA-DDI: predicting drug-drug interaction events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism. Briefings Bioinf. 2022; 23 (1): bbab421.
CrossRef Google scholar
[14]
Lyu T , Gao J , Tian L , Li Z , Zhang P , Zhang J . MDNN: a multimodal deep neural network for predicting drug-drug interaction events. IJCAI. 2021: 3536- 42.
CrossRef Google scholar
[15]
Rohani N , Eslahchi C . Drug-drug interaction predicting by neural network using integrated similarity. Sci Rep. 2019; 9 (1): 13645.
CrossRef Google scholar
[16]
Zhang W , Chen Y , Liu F , Luo F , Tian G , Li X . Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinf. 2017; 18 (1): 1- 12.
CrossRef Google scholar
[17]
Gottlieb A , Stein GY , Oron Y , Ruppin E , Sharan R . INDI: a computational framework for inferring drug interactions and their associated recommendations. Mol Syst Biol. 2012; 8 (1): 592.
CrossRef Google scholar
[18]
Vilar S , Harpaz R , Uriarte E , Santana L , Rabadan R , Friedman C . Drug-drug interaction through molecular structure similarity analysis. J Am Med Inf Assoc. 2012; 19 (6): 1066- 74.
CrossRef Google scholar
[19]
Lin S , Chen W , Chen G , Zhou S , Wei DQ , Xiong Y . MDDI-SCL: predicting multi-type drug-drug interactions via supervised contrastive learning. J Cheminf. 2022; 14 (1): 1- 2.
CrossRef Google scholar
[20]
Ryu JY , Kim HU , Lee SY . Deep learning improves prediction of drug-drug and drug-food interactions. Proc Natl Acad Sci USA. 2018; 115 (18): E4304- 11.
CrossRef Google scholar
[21]
Gómez-Bombarelli R , Wei JN , Duvenaud D , Hernández-Lobato JM , Sánchez-Lengeling B , Sheberla D , et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci. 2018; 4 (2): 268- 76.
CrossRef Google scholar
[22]
Chu X , Lin Y , Wang Y , Wang L , Wang J , Gao J . Mlrda: a multi-task semi-supervised learning framework for drug-drug interaction prediction. In: Proceedings of the 28th international joint conference on artificial intelligence; 2019. p. 4518- 24.
CrossRef Google scholar
[23]
Kumar Shukla P , Kumar Shukla P , Sharma P , Rawat P , Samar J , Moriwal R , et al. Efficient prediction of drug-drug interaction using deep learning models. IET Syst Biol. 2020; 14 (4): 211- 6.
CrossRef Google scholar
[24]
Qi Y . Random forest for bioinformatics. In: Ensemble machine learning: methods and applications. Boston: Springer US; 2012. p. 307- 23.
CrossRef Google scholar
[25]
Cunningham P , Delany SJ . k-Nearest neighbour classifiers—A Tutorial. ACM Comput Surv. 2021; 54 (6): 1- 25.
CrossRef Google scholar
[26]
Menard S . Applied logistic regression analysis (No. 106). Sage; 2002.
CrossRef Google scholar
[27]
Li Y , Tarlow D , Brockschmidt M , Zemel R . Gated graph sequence neural networks; 2015. arXiv preprint arXiv:1511.05493.
[28]
Wang Y , Min Y , Chen X , Wu J . Multi-view graph contrastive representation learning for drug-drug interaction prediction. In: Proceedings of the web conference 2021; 2021. p. 2921- 33.
CrossRef Google scholar
[29]
Duvenaud DK , Maclaurin D , Iparraguirre J , Bombarell R , Hirzel T , Aspuru-Guzik A , et al. Convolutional networks on graphs for learning molecular fingerprints. Adv Neural Inf Process Syst. 2015; 28.
[30]
Dunteman GH . Principal components analysis (No. 69). Sage; 1989.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Authors. Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(563 KB)

Accesses

Citations

Detail

Sections
Recommended

/