Constructing efficient bacterial cell factories to enable one-carbon utilization based on quantitative biology: A review

Yazhen Song , Chenxi Feng , Difei Zhou , Zengxin Ma , Lian He , Cong Zhang , Guihong Yu , Yan Zhao , Song Yang , Xinhui Xing

Quant. Biol. ›› 2024, Vol. 12 ›› Issue (1) : 1 -14.

PDF (1100KB)
Quant. Biol. ›› 2024, Vol. 12 ›› Issue (1) :1 -14. DOI: 10.1002/qub2.31
REVIEW ARTICLE

Constructing efficient bacterial cell factories to enable one-carbon utilization based on quantitative biology: A review

Author information +
History +
PDF (1100KB)

Abstract

Developing methylotrophic cell factories that can efficiently catalyze organic one-carbon (C1) feedstocks derived from electrocatalytic reduction of carbon dioxide into bio-based chemicals and biofuels is of strategic significance for building a carbon-neutral, sustainable economic and industrial system. With the rapid advancement of RNA sequencing technology and mass spectrometer analysis, researchers have used these quantitative microbiology methods extensively, especially isotope-based metabolic flux analysis, to study the metabolic processes initiating from C1 feedstocks in natural C1-utilizing bacteria and synthetic C1 bacteria. This paper reviews the use of advanced quantitative analysis in recent years to understand the metabolic network and basic principles in the metabolism of natural C1-utilizing bacteria grown on methane, methanol, or formate. The acquired knowledge serves as a guide to rewire the central methylotrophic metabolism of natural C1-utilizing bacteria to improve the carbon conversion efficiency, and to engineer non-C1-utilizing bacteria into synthetic strains that can use C1 feedstocks as the sole carbon and energy source. These progresses ultimately enhance the design and construction of highly efficient C1-based cell factories to synthesize diverse high value-added products. The integration of quantitative biology and synthetic biology will advance the iterative cycle of understand–design–build–testing–learning to enhance C1-based biomanufacturing in the future.

Keywords

13C-metabolic flux analysis / methylotrophic cell factories / one-carbon feedstock / quantitative biology

Cite this article

Download citation ▾
Yazhen Song, Chenxi Feng, Difei Zhou, Zengxin Ma, Lian He, Cong Zhang, Guihong Yu, Yan Zhao, Song Yang, Xinhui Xing. Constructing efficient bacterial cell factories to enable one-carbon utilization based on quantitative biology: A review. Quant. Biol., 2024, 12(1): 1-14 DOI:10.1002/qub2.31

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Claassens NJ, Cotton CA, Kopljar D, Bar-Even A. Making quantitative sense of electromicrobial production. Nat Catal. 2019;2(5):437–47.

[2]

Antoniewicz MR. Synthetic methylotrophy: strategies to assimilate methanol for growth and chemicals production. Curr Opin Biotechnol. 2019;59:165–74.

[3]

Govindaraju A, Good NM, Zytnick AM, Martinez-Gomez NC. Employing methylotrophs for a green economy: one-carbon to fuel them all and through metabolism redesign them. Curr Opin Microbiol. 2022;67:102145.

[4]

Lv X, Yu W, Zhang C, Ning P, Li J, Liu Y, et al. C1-based biomanufacturing: advances, challenges and perspectives. Bioresour Technol. 2022;367:128259.

[5]

Hu L, Guo S, Wang B, Fu R, Fan D, Jiang M, et al. Biovalorization of C1 gaseous substrates into bioalcohols: potentials and challenges in reducing carbon emissions. Biotechnol Adv. 2022;59:107954.

[6]

Zheng T, Zhang M, Wu L, Guo S, Liu X, Zhao J, et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat Catal. 2022;5:388–96.

[7]

Shih CF, Zhang T, Li J, Bai C. Powering the future with liquid sunshine. Joule. 2018;2(10):1925–49.

[8]

Ashok J, Ang ML, Kawi S. Enhanced activity of CO2 methanation over Ni/CeP2-ZrO2 catalysts: influence of preparation methods. Catal Today. 2016;281:304–11.

[9]

Szima S, Cormos CC. Improving methanol synthesis from carbon-free H2 and captured CO2: a techno-economic and environmental evaluation. J CO2 Util. 2018;24:555–63.

[10]

Bulushev DA, Ross JR. Heterogeneous catalysts for hydrogenation of CO2 and bicarbonates to formic acid and formates. Catal Rev Sci Eng. 2018;60(4):566–93.

[11]

Sanford PA, Woolston BM. Synthetic or natural? Metabolic engineering for assimilation and valorization of methanol. Curr Opin Biotechnol. 2022;74:171–9.

[12]

Pham DN, Nguyen AD, Lee EY. Outlook on engineering methylotrophs for one-carbon-based industrial biotechnology. Chem Eng J. 2022;449:137769.

[13]

Yoon J, Chang W, Oh SH, Choi SH, Yang YH, Oh MK. Metabolic engineering of Methylorubrum extorquens AM1 for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production using formate. Int J Biol Macromol. 2021;177:284–93.

[14]

Hoyt KO, Woolston BM. Adapting isotopic tracer and metabolic flux analysis approaches to study C1 metabolism. Curr Opin Biotechnol. 2022;75:102695.

[15]

Nguyen DTN, Lee OK, Nguyen TT, Lee EY. Type II methanotrophs: a promising microbial cell-factory platform for bioconversion of methane to chemicals. Biotechnol Adv. 2021;47:107700.

[16]

Lieven C, Herrgård MJ, Sonnenschein N. Microbial methylotrophic metabolism: recent metabolic modeling efforts and their applications in industrial biotechnology. Biotechnol J. 2018; 13(8):1800011.

[17]

Ochsner AM, Sonntag F, Buchhaupt M, Schrader J, Vorholt JA. Methylobacterium extorquens: methylotrophy and biotechnological applications. Appl Microbiol Biotechnol. 2015;99(2): 517–34.

[18]

Vuilleumier S, Chistoserdova L, Lee MC, Bringel F, Lajus A, Zhou Y, et al. Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One. 2009; 4(5):e5584.

[19]

Okubo Y, Skovran E, Guo X, Sivam D, Lidstrom ME. Implementation of microarrays for Methylobacterium extorquens AM1. OMICS. 2007;11(4):325–40.

[20]

Kiefer P, Portais JC, Vorholt JA. Quantitative metabolome analysis using liquid chromatography-high-resolution mass spectrometry. Anal Biochem. 2008;382(2):94–100.

[21]

Yang S, Hoggard JC, Lidstrom ME, Synovec RE. Comprehensive discovery of 13C labeled metabolites in the bacterium Methylobacterium extorquens AM1 using gas chromatographymass spectrometry. J Chromatogr. 2013;1317:175–85.

[22]

Peyraud R, Schneider K, Kiefer P, Massou S, Vorholt JA, Portais JC. Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1. BMC Syst Biol. 2011;5:1–22.

[23]

Keller P, Noor E, Meyer F, Reiter MA, Anastassov S, Kiefer P, et al. Methanol-dependent Escherichia coli strains with a complete ribulose monophosphate cycle. Nat Commun. 2020;11:1–10.

[24]

Kalyuzhnaya M, Yang S, Rozova O, Smalley N, Clubb J, Lamb A, et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun. 2013;4:1–7.

[25]

Yang S, Matsen JB, Konopka M, Green-Saxena A, Clubb J, Sadilek M, et al. Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part II. Metabolomics and 13C-labeling study. Front Microbiol. 2013;4:70.

[26]

Fu Y, Beck DA, Lidstrom ME. Difference in C3-C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1. BMC Microbiol. 2016;16:1–10.

[27]

He L, Fu Y, Lidstrom ME. Quantifying methane and methanol metabolism of “Methylotuvimicrobium buryatense” 5GB1C under substrate limitation. mSystems. 2019;4(6): e00719–48.

[28]

Jiang W, Hernandez Villamor D, Peng H, Chen J, Liu L, Haritos V, et al. Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. Nat Chem Biol. 2021;17(8):845–55.

[29]

Zhao T, Li Y, Zhang Y. Biological carbon fixation: a thermodynamic perspective. Green Chem. 2021;23(20):7852–64.

[30]

Humphreys JR, Hebdon SD, Rohrer H, Magnusson L, Urban C, Chen YP, et al. Establishing Butyribacterium methylotrophicum as a platform organism for the production of biocommodities from liquid C1 metabolites. Appl Environ Microbiol. 2022;88(6): e02321–93.

[31]

Flaiz M, Ludwig G, Bengelsdorf FR, Dürre P. Production of the biocommodities butanol and acetone from methanol with fluorescent FAST-tagged proteins using metabolically engineered strains of Eubacterium limosum. Biotechnol Biofuels. 2021; 14:1–20.

[32]

Chistoserdova L. Modularity of methylotrophy, revisited. Environ Microbiol. 2011;13(10):2603–22.

[33]

Müller JE, Meyer F, Litsanov B, Kiefer P, Vorholt JA. Core pathways operating during methylotrophy of Bacillus methanolicus MGA3 and induction of a bacillithiol-dependent detoxification pathway upon formaldehyde stress. Mol Microbiol. 2015;98(6):1089–100.

[34]

Anthony C. How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway. Sci Prog. 2011;94(2):109–37.

[35]

Sánchez-Andrea I, Guedes IA, Hornung B, Boeren S, Lawson CE, Sousa DZ, et al. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nat Commun. 2020;11:1–12.

[36]

Kao WC, Chen YR, Eugene CY, Lee H, Tian Q, Wu KM, et al. Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath). J Biol Chem. 2004;279(49):51554–60.

[37]

Nguyen AD, Hwang IY, Lee OK, Kim D, Kalyuzhnaya MG, Mariyana R, et al. Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane. Metab Eng. 2018;47:323–33.

[38]

De la Torre A, Metivier A, Chu F, Laurens LM, Beck DA, Pienkos PT, et al. Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G (B1). Microb Cell Factories. 2015;14:1–15.

[39]

Fu Y, He L, Reeve J, Beck DA, Lidstrom ME. Core metabolism shifts during growth on methanol versus methane in the methanotroph Methylomicrobium buryatense 5GB1. mBio. 2019; 10(2):e00406–19.

[40]

Delépine B, López MG, Carnicer M, Vicente CM, Wendisch VF, Heux S. Charting the metabolic landscape of the facultative methylotroph Bacillus methanolicus. mSystems. 2020;5: e00720–45.

[41]

Nguyen AD, Chau THT, Lee EY. Methanotrophic microbial cell factory platform for simultaneous conversion of methane and xylose to value-added chemicals. Chem Eng J. 2021;420:127632.

[42]

Peyraud R, Kiefer P, Christen P, Massou S, Portais JC, Vorholt JA. Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics. Proc Natl Acad Sci USA. 2009;106(12): 4846–51.

[43]

Yuan XJ, Chen WJ, Ma ZX, Yuan QQ, Zhang M, He L, et al. Rewiring the native methanol assimilation metabolism by incorporating the heterologous ribulose monophosphate cycle into Methylorubrum extorquens. Metab Eng. 2021;64:95–110.

[44]

Fu Y, Li Y, Lidstrom M. The oxidative TCA cycle operates during methanotrophic growth of the Type I methanotroph Methylomicrobium buryatense 5GB1. Metab Eng. 2017;42:43–51.

[45]

Nguyen AD, Park JY, Hwang IY, Hamilton R, Kalyuzhnaya MG, Kim D, et al. Genome-scale evaluation of core one-carbon metabolism in gammaproteobacterial methanotrophs grown on methane and methanol. Metab Eng. 2020;57:1–12.

[46]

Chen FYH, Jung HW, Tsuei CY, Liao JC. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol. Cell. 2020;182(4):933–46.

[47]

Wang J, Jian X, Xing XH, Zhang C, Fei Q. Empowering a methanol-dependent Escherichia coli via adaptive evolution using a high-throughput microbial microdroplet culture system. Front Bioeng Biotechnol. 2020;8:570.

[48]

Jian X, Guo X, Wang J, Tan ZL, Xing Xh, Wang L, et al. Microbial microdroplet culture system (MMC): an integrated platform for automated, high-throughput microbial cultivation and adaptive evolution. Biotechnol Bioeng. 2020;117(6):1724–37.

[49]

Keller P, Reiter MA, Kiefer P, Gassler T, Hemmerle L, Christen P, et al. Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle. Nat Commun. 2022;13:1–13.

[50]

Bar-Even A, Noor E, Flamholz A, Milo R. Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes. Biochim Biophys Acta Bioenerg. 2013;1827(8-9):1039–47.

[51]

Kim S, Lindner SN, Aslan S, Yishai O, Wenk S, Schann K, et al. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat Chem Biol. 2020;16(5):538–45.

[52]

Fei Q, Puri AW, Smith H, Dowe N, Pienkos P. Enhanced biological fixation of methane for microbial lipid production by recombinant Methylomicrobium buryatense. Biotechnol Biofuels. 2018;11:1–11.

[53]

Antoniewicz MR. Parallel labeling experiments for pathway elucidation and 13C metabolic flux analysis. Curr Opin Biotechnol. 2015;36:91–7.

[54]

Barenholz U, Davidi D, Reznik E, Bar-On Y, Antonovsky N, Noor E, et al. Design principles of autocatalytic cycles constrain enzyme kinetics and force low substrate saturation at flux branch points. Elife. 2017;6:e20667.

[55]

Gregory GJ, Bennett RK, Papoutsakis ET. Recent advances toward the bioconversion of methane and methanol in synthetic methylotrophs. Metab Eng. 2022;71:99–116.

[56]

Crowther GJ, Kosály G, Lidstrom ME. Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J Bacteriol. 2008;190(14):5057–62.

[57]

Liang WF, Cui LY, Cui JY, Yu KW, Yang S, Wang TM, et al. Biosensor-assisted transcriptional regulator engineering for Methylobacterium extorquens AM1 to improve mevalonate synthesis by increasing the acetyl-CoA supply. Metab Eng. 2017;39:159–68.

[58]

Schneider K, Peyraud R, Kiefer P, Christen P, Delmotte N, Massou S, et al. The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate. J Biol Chem. 2012;287(1):757–66.

[59]

Zhu WL, Cui JY, Cui LY, Liang WF, Yang S, Zhang C, et al. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway. Appl Microbiol Biotechnol. 2016;100(5):2171–82.

[60]

Yang YM, Chen WJ, Yang J, Zhou YM, Hu B, Zhang M, et al. Production of 3-hydroxypropionic acid in engineered Methylobacterium extorquens AM1 and its reassimilation through a reductive route. Microb Cell Factories. 2017;16:1–17.

[61]

Hu B, Yang YM, Beck DA, Wang QW, Chen WJ, Yang J, et al. Comprehensive molecular characterization of Methylobacterium extorquens AM1 adapted for 1-butanol tolerance. Biotechnol Biofuels. 2016;9:1–14.

[62]

von Borzyskowski LS, Sonntag F, Pö schel L, Vorholt JA, Schrader J, Erb TJ, et al. Replacing the ethylmalonyl-CoA pathway with the glyoxylate shunt provides metabolic flexibility in the central carbon metabolism of Methylobacterium extorquens AM1. ACS Synth Biol. 2018;7(1):86–97.

[63]

Pfeifenschneider J, Brautaset T, Wendisch VF. Methanol as carbon substrate in the bio-economy: metabolic engineering of aerobic methylotrophic bacteria for production of value-added chemicals. Biofuel Bioprod Biorefin. 2017;11(4):719–31.

[64]

Zhu T, Zhao T, Bankefa OE, Li Y. Engineering unnatural methylotrophic cell factories for methanol-based biomanufacturing: challenges and opportunities. Biotechnol Adv. 2020;39:107467.

[65]

Henard CA, Freed EF, Guarnieri MT. Phosphoketolase pathway engineering for carbon-efficient biocatalysis. Curr Opin Biotechnol. 2015;36:183–8.

[66]

Rozova ON, Khmelenina VN, Gavletdinova JZ, Mustakhimov II, Trotsenko YA. Acetate kinase-an enzyme of the postulated phosphoketolase pathway in Methylomicrobium alcaliphilum 20Z. Antonie Leeuwenhoek. 2015;108(4):965–74.

[67]

Bogorad IW, Chen CT, Theisen MK, Wu TY, Schlenz AR, Lam AT, et al. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle. Proc Natl Acad Sci USA. 2014; 111(45):15928–33.

[68]

Henard CA, Smith HK, Guarnieri MT. Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst. Metab Eng. 2017;41: 152–8.

[69]

Henard CA, Wu C, Xiong W, Henard JM, Davidheiser-Kroll B, Orata FD, et al. Ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO) is essential for growth of the Methylococcus capsulatus strain Bath. Appl Environ Microbiol. 2021;87(18): e00821–81.

[70]

Von Borzyskowski LS, Carrillo M, Leupold S, Glatter T, Kiefer P, Weishaupt R, et al. An engineered Calvin-Benson-Bassham cycle for carbon dioxide fixation in Methylobacterium extorquens AM1. Metab Eng. 2018;47:423–33.

[71]

Ochsner AM, Christen M, Hemmerle L, Peyraud R, Christen B, Vorholt JA. Transposon sequencing uncovers an essential regulatory function of phosphoribulokinase for methylotrophy. Curr Biol. 2017;27(17):2579–88.

[72]

Cui LY, Wang SS, Guan CG, Liang WF, Xue ZL, Zhang C, et al. Breeding of methanol-tolerant Methylobacterium extorquens AM1 by atmospheric and room temperature plasma mutagenesis combined with adaptive laboratory evolution. Biotechnol J. 2018;13:1700679.

[73]

Müller JE, Meyer F, Litsanov B, Kiefer P, Potthoff E, Heux S, et al. Engineering Escherichia coli for methanol conversion. Metab Eng. 2015;28:190–201.

[74]

Meyer F, Keller P, Hartl J, Gröninger OG, Kiefer P, Vorholt JA. Methanol-essential growth of Escherichia coli. Nat Commun. 2018;9:1–10.

[75]

Woolston BM, King JR, Reiter M, Van Hove B, Stephanopoulos G. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli. Nat Commun. 2018;9:1–12.

[76]

Yu H, Liao JC. A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds. Nat Commun. 2018;9:1–10.

[77]

Xiao L, Liu G, Gong F, Zhu H, Zhang Y, Cai Z, et al. A minimized synthetic carbon fixation cycle. ACS Catal. 2021;12(1):799–808.

[78]

Schwander T, Von Borzyskowski LS, Burgener S, Cortina NS, Erb TJ. A synthetic pathway for the fixation of carbon dioxide in vitro. Science. 2016;354(6314):900–4.

[79]

Hong Y, Ren J, Zhang X, Wang W, Zeng AP. Quantitative analysis of glycine related metabolic pathways for one-carbon synthetic biology. Curr Opin Biotechnol. 2020;64:70–8.

[80]

Claassens NJ, Bordanaba-Florit G, Cotton CA, De Maria A, Finger-Bou M, Friedeheim L, et al. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator. Metab Eng. 2020;62:30–41.

[81]

Turlin J, Dronsella B, De Maria A, Lindner SN, Nikel PI. Integrated rational and evolutionary engineering of genomereduced Pseudomonas putida strains promotes synthetic formate assimilation. Metab Eng. 2022;74:191–205.

[82]

Hong Y, Arbter P, Wang W, Rojas LN, Zeng AP. Introduction of glycine synthase enables uptake of exogenous formate and strongly impacts the metabolism in Clostridium pasteurianum. Biotechnol Bioeng. 2021;118(3):1366–80.

[83]

Lu X, Liu Y, Yang Y, Wang S, Wang Q, Wang X, et al. Constructing a synthetic pathway for acetyl-coenzyme A from onecarbon through enzyme design. Nat Commun. 2019;10:1–10.

[84]

Chou A, Clomburg JM, Qian S, Gonzalez R. 2-Hydroxyacyl-CoA lyase catalyzes acyloin condensation for one-carbon bioconversion. Nat Chem Biol. 2019;15(9):900–6.

[85]

Siegel JB, Smith AL, Poust S, Wargacki AJ, Bar-Even A, Louw C, et al. Computational protein design enables a novel onecarbon assimilation pathway. Proc Natl Acad Sci USA. 2015; 112(12):3704–9.

[86]

Guo SQ, Zhang TQ, Chen YH, Yang SH, Fei Q. Transcriptomic profiling of nitrogen fixation and the role of NifA in Methylomicrobium buryatense 5GB1. Appl Microbiol Biotechnol. 2022;106(8):3191–9.

[87]

Carrillo M, Wagner M, Petit F, Dransfeld A, Becker A, Erb TJ. Design and control of extrachromosomal elements in Methylorubrum extorquens AM1. ACS Synth Biol. 2019;8(11):2451–6.

[88]

Sathesh-Prabu C, Ryu YS, Lee SK. Levulinic acid-inducible and tunable gene expression system for Methylorubrum extorquens. Front Bioeng Biotechnol. 2021;9:797020.

[89]

Mo XH, Zhang H, Wang TM, Zhang C, Zhang C, Xing XH, et al. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis. Appl Microbiol Biotechnol. 2020;104(10):4515–32.

[90]

Cheng MG, Pei DM, He L, Fei Q, Yan X. Cre/lox-mediated CRISPRi library reveals core genome of a type I methanotroph Methylotuvimicrobium buryatense 5GB1C. Appl Environ Microbiol. 2023;89(1):e0188322.

[91]

Huang H, Chai C, Li N, Rowe P, Minton NP, Yang S, et al. CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth Biol. 2016;5(12):1355–61.

[92]

Zhang S, Zhang W, Jiang M. Efficient fatty acid synthesis from methanol in methylotrophic yeast. Synth Syst Biotechnol. 2022;7(4):1183–4.

[93]

Guo F, Dai Z, Peng W, Zhang S, Zhou J, Ma J, et al. Metabolic engineering of Pichia pastoris for malic acid production from methanol. Biotechnol Bioeng. 2021;118(1):357–71.

[94]

Cai P, Wu X, Deng J, Gao L, Shen Y, Yao L, et al. Methanol biotransformation toward high-level production of fatty acid derivatives by engineering the industrial yeast Pichia pastoris. Proc Natl Acad Sci USA. 2022;119(29):e2201711119.

[95]

Gao J, Li Y, Yu W, Zhou YJ. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol. Nat Metab. 2022;4(7):932–43.

[96]

Whitaker WB, Jones JA, Bennett RK, Gonzalez JE, Vernacchio VR, Collins SM, et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metab Eng. 2017;39:49–59.

[97]

Cai T, Sun H, Qiao J, Zhu L, Zhang F, Zhang J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science. 2021;373(6562):1523–7.

RIGHTS & PERMISSIONS

2024 The Authors. Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (1100KB)

1052

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/