Theoretical perspective on synthetic man-made life: Learning from the origin of life

Lu Peng , Zecheng Zhang , Xianyi Wang , Weiyi Qiu , Liqian Zhou , Hui Xiao , Chunxiuzi Liu , Shaohua Tang , Zhiwei Qin , Jiakun Jiang , Zengru Di , Yu Liu

Quant. Biol. ›› 2023, Vol. 11 ›› Issue (4) : 376 -394.

PDF (789KB)
Quant. Biol. ›› 2023, Vol. 11 ›› Issue (4) :376 -394. DOI: 10.1002/qub2.22
REVIEW ARTICLE

Theoretical perspective on synthetic man-made life: Learning from the origin of life

Author information +
History +
PDF (789KB)

Abstract

Creating a man-made life in the laboratory is one of life science’s most intriguing yet challenging problems. Advances in synthetic biology and related theories, particularly those related to the origin of life, have laid the groundwork for further exploration and understanding in this field of artificial life or man-made life. But there remains a wealth of quantitative mathe-matical models and tools that have yet to be applied to this area. In this paper, we review the two main approaches often employed in the field of man-made life: the top-down approach that reduces the complexity of extant and existing living systems and the bottom-up approach that integrates well-defined components, by introducing the theoretical basis, recent advances, and their limitations. We then argue for another possible approach, namely “bottom-up from the origin of life”: Starting with the establishment of auto-catalytic chemical reaction networks that employ physical boundaries as the initial compartments, then designing directed evolutionary systems, with the expectation that independent compartments will eventually emerge so that the system becomes free-living. This approach is actually analogous to the process of how life originated. With this paper, we aim to stimulate the interest of synthetic biologists and experimentalists to consider a more theoretical perspective, and to promote the communication between the origin of life community and the synthetic man-made life community.

Keywords

artificial cell / autocatalytic / ladderpath / origin of life / protocell

Cite this article

Download citation ▾
Lu Peng, Zecheng Zhang, Xianyi Wang, Weiyi Qiu, Liqian Zhou, Hui Xiao, Chunxiuzi Liu, Shaohua Tang, Zhiwei Qin, Jiakun Jiang, Zengru Di, Yu Liu. Theoretical perspective on synthetic man-made life: Learning from the origin of life. Quant. Biol., 2023, 11(4): 376-394 DOI:10.1002/qub2.22

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miller SL. A production of amino acids under possible primitive earth conditions. Science. 1953;117(3046):528–9.

[2]

Hutchison CA, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, et al. Design and synthesis of a minimal bacterial genome. Science. 2016;351(6280):aad6253.

[3]

Xu C, Martin N, Li M, Mann S. Living material assembly of bacteriogenic protocells. Nature. 2022;609(7929):1029–37.

[4]

Koshland DE. The seven pillars of life. Science. 2002;295(5563):2215–6.

[5]

Smith KC, Mariscal C. Social and conceptual issues in astrobiology. Cambridge University Press; 1970.

[6]

Cleland CE, Chyba CF. Planets and life: the emerging science of astrobiology. Cambridge University Press; 2007.

[7]

Schrodinger E. What is life? And mind and matter. Cambridge University Press; 1944.

[8]

Ganti T. The principles of life. Oxford University Press UK; 2003.

[9]

Shapiro R. A simpler origin for life. Sci Am. 2007;296(6):46–53.

[10]

Maturana HR, Varela FJ. Autopoiesis and cognition: the realization of the living. Springer Science & Business Media; 1991.

[11]

Joyce CM, Steitz TA. Function and structure relationships in DNA pol ymerases. Annu Rev Biochem. 1994;63(1):777–822.

[12]

Szostak JW, Bartel DP, Luisi PL. Synthesizing life. Nature. 2001;409(6818):387–90.

[13]

Benner SA. Defining life. Astrobiology. 2010;10:1021–230.

[14]

Luisi PL. About various definitions of life. Biosphere. 1998;28(4/6):613–22.

[15]

Damiano L, Luisi PL. Towards an autopoietic redefinition of life. Orig Life Evol Biosph. 2010;40(2):145–9.

[16]

Allwood A, Amend J, Anbar A, Billings L, Blankenship R, Boss A, et al. NASA astrobiology strategy. NASA. 2015.

[17]

Powell K. Biology from scratch: built from the bottom up, synthetic cells could reveal the boundaries of life. Nature. 2018;563(7730):172–5.

[18]

Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 2010;329(5987): 52–6.

[19]

Thornburg ZR, Bianchi DM, Brier TA, Gilbert BR, Earnest TM, Melo MCR, et al. Fundamental behaviors emerge from simulations of a living minimal cell. Cell. 2022;185(2): 345–60.

[20]

Pelletier JF, Sun L, Wise KS, Assad-Garcia N, Karas BJ, Deerinck TJ, et al. Genetic requirements for cell division in a genomically minimal cell. Cell. 2021;184(9):2430–40.

[21]

Shao Y, Lu N, Wu Z, Cai C, Wang S, Zhang LL, et al. Creating a functional single-chromosome yeast. Nature. 2018;560(7718):331–5.

[22]

Oparin AI. Organisms and the earth. Nature. 1938;142(3592): 412–3.

[23]

Muller HJ. The gene. Proc Roy Soc Med. 1947;134:1–37.

[24]

Lazcano A. Which way to life? Orig. Life Evol. Biosph. 2010;40(2):161–7.

[25]

Kauffman SA. The origins of order: self-organization and selection in evolution. Oxford University Press; 1993.

[26]

Orgel LE. The implausibility of metabolic cycles on the prebiotic earth. PLoS Biol. 2008;6(1):e18.

[27]

Mizuno T, Weiss AH. Synthesis and utilization of formose sugars. Adv Carbohydr Chem Biochem. 1974;29:173–227.

[28]

Schwartz AW, Goverde M. Acceleration of hcn oligomerization by formaldehyde and related compounds: implications for prebiotic syntheses. J Mol Evol. 1982;18(5):351–3.

[29]

Morowitz HJ. A theory of biochemical organization, metabolic pathways, and evolution. Complexity. 1999;4(6):39–53.

[30]

Wächtershäuser G. Before enzymes and templates: theory of surface metabolism. Clin Microbiol Rev. 1988;52(4):452–84.

[31]

Wächtershäuser G. Evolution of the first metabolic cycles. Proc Natl Acad Sci USA. 1990;87(1):200–40.

[32]

Wächtershäuser G. Life as we don’t know it. Science. 2000;289(5483):1307–8.

[33]

Lazcano A, Miller SL. On the origin of metabolic pathways. J Mol Evol. 1999;49(4):424–31.

[34]

Delaye L, Becerra A, Lazcano A. The last common ancestor: what’s in a name? Orig. Life Evol. Biosph. 2005;35(6):537–54.

[35]

Wolos A, Roszak R, Zadlo-Dobrowolska A, Beker W, Mikulak-Klucznik B, Spolnik G, et al. Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry. Science. 2020;369(6511):1584.

[36]

Troland LT. Biological enigmas and the theory of enzyme action. Am Nat. 1917;51(606):321–50.

[37]

Woese CR, Dugre DH, Saxinger WC, Dugre SA. The molecular basis for the genetic code. Proc Natl Acad Sci USA. 1966;55(4):966–74.

[38]

Crick PH. The origin of the genetic code. J Mol Biol. 1968;38(3):367–79.

[39]

Orgel LE. Evolution of the genetic apparatus. J Mol Biol. 1968;38(3):381–93.

[40]

Gilbert W. The RNA world. Nature. 1986;319(6055):618.

[41]

Copley SD, Smith E, Morowitz HJ. The origin of the RNA world: Co-evolution of genes and metabolism. Bioorg Chem. 2007;35(6):430–43.

[42]

Nelson JW, Breaker RR. The lost language of the RNA world. Sci Signal. 2017;10(483):eaam8812.

[43]

Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. The structural basis of ribosome activity in peptide bond synthesis. Science. 2000;289(5481):920–30.

[44]

Turk RM, Chumachenko NV, Yarus M. Multiple translational products from a five-nucleotide ribozyme. Proc Natl Acad Sci USA. 2010;107(10):4585–9.

[45]

Muller F, Escobar L, Xu F, Wegrzyn E, Nainyte M, Amatov T, et al. A prebiotically plausible scenario of an RNA-peptide world. Nature. 2022;605(7909):279–84.

[46]

Aravind L, Anantharaman V, Koonin EV. Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA. Proteins. 2002;48:1–14.

[47]

Danchin A, Fang G, Noria S. The extant core bacterial proteome is an archive of the origin of life. Proteomics. 2007;7(6): 875–89.

[48]

Johnston WK, Unrau PJ, Lawrence MS, Glasner ME, Bartel DP. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science. 2001;292(5520):1319–25.

[49]

Joyce GF. Evolution in an RNA world. Cold Spring Harb. Sym. 2009;74(0):17–23.

[50]

Mizuuchi R, Furubayashi T, Ichihashi N. Evolutionary transition from a single RNA replicator to a multiple replicator network. Nat Commun. 2022;13(1):1460.

[51]

Oró J. Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature. 1961;191(4794):1193–4.

[52]

Abelson PH. Chemical events on the primitive earth. Proc Natl Acad Sci USA. 1966;55(6):1365–72.

[53]

Roy D, Najafian K, Schleyer PvR. Chemical evolution: the mechanism of the formation of adenine under prebiotic conditions. Proc Natl Acad Sci USA. 2007;104(44):17272.

[54]

Eschenmoser A. On a hypothetical generational relationship between hcn and constituents of the reductive citric acid cycle. Chem Biodivers. 2007;4:554–73.

[55]

Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E. Genetics first or metabolism first? The formamide clue. Chem Soc Rev. 2012;41(16):5526–65.

[56]

Saladino R, Crestini C, Pino S, Costanzo G, Di Mauro E. Formamide and the origin of life. Phys Life Rev. 2012;9(1): 84–104.

[57]

Muchowska KB, Varma SJ, Moran J. Nonenzymatic metabolic reactions and life’s origins. Chem Rev. 2020;120(15): 7708–44.

[58]

Chen IA, Walde P. From self-assembled vesicles to protocells. CSH Perspect. Biol. 2010;2(7):a002170.

[59]

Cornell CE, Black RA, Xue M, Litz HE, Ramsay A, Gordon M, et al. Prebiotic amino acids bind to and stabilize prebiotic fatty acid membranes. Proc Natl Acad Sci USA. 2019;116(35): 17239–44.

[60]

Chen IA. The emergence of cells during the origin of life. Science. 2006;314(5805):1558–9.

[61]

Kahana A, Lancet D. Self-reproducing catalytic micelles as nanoscopic protocell precursors. Nat Rev Chem. 2021;5(12): 870–8.

[62]

Shapiro R. The sudden appearance of a large self-copying molecule such as RNA was exceedingly improbable. Energy-driven networks of small molecules afford better odds as the initiators of life. Sci Am. 2007;296(6):46–53.

[63]

Chang T. 50th anniversary of artificial cells: their role in biotechnology, nanomedicine, regenerative medicine, blood substitutes, bioencapsulation, cell/stem cell therapy and nanorobotics. Artif Cell Blood Substit Biotechnol. 2007;35(6): 545–54.

[64]

Damer B, Deamer D. Coupled phases and combinatorial selection in fluctuating hydrothermal pools: a scenario to guide experimental approaches to the origin of cellular life. Life. 2015;5(1):872–87.

[65]

Mukwaya V, Mann S, Dou H. Chemical communication at the synthetic cell/living cell interface. Commun Chem. 2021;4(1):161.

[66]

Mukwaya V, Zhang P, Liu L, Dang-i AY, Li M, Mann S, et al. Programmable membrane-mediated attachment of synthetic virus-like nanoparticles on artificial protocells for enhanced immunogenicity. Cell Rep. Phys. Sci. 2021;2(1):100291.

[67]

Segré D, Lancett D. Composing life. EMBO Rep. 2000;1(3): 217–22.

[68]

Segré D, Deamer DB-EDW, Lancet D. The lipid world. Orig Life Evol Biosph. 2001;31(1/2):119–45.

[69]

Serrano-Luginbühl S, Ruiz-Mirazo K, Ostaszewski R, Gallou F, Walde P. Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions. Nat Rev Chem. 2018;2(10):306–27.

[70]

Lancet D, Segre D, Kahana A. Twenty years of “lipid world”: a fertile partnership with david deamer. Life. 2019;9(4):77.

[71]

Kurihara K, Tamura M, Shohda K, Toyota T, Suzuki K, Sugawara T. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat Chem. 2011;3(10):775–81.

[72]

Neumann JV. The general an logical theory of automata. Papers of John Von Neumann on Computing & Computer Theory; 1948.

[73]

Gardner M. The fantastic combinations of john conway’s new solitaire game “life. Sci Am. 1970;223(4):120–3.

[74]

Langton CG. Studying artificial life with cellular automata. Physica D. 1986;22(1-3):120–49.

[75]

Wolfram S. A new kind of science. Wolfram Media; 2002.

[76]

Weihs D, Gefen A, Vermolen FJ. Review on experiment-based two- and three-dimensional models for wound healing. Interface Focus. 2016;6(5):20160038.

[77]

Shakeel A, Love PJ. When is a quantum cellular automaton (QCA) a quantum lattice gas automaton (QLGA)? J Math Phys. 2013;54(9):092203-1.

[78]

Cole T, Lusth JC. Quantum-dot cellular automata. Prog Quant Electron. 2001;25(4):165–89.

[79]

Langton CG. Artificial life. The MIT Press; 1989.

[80]

Pilat ML, Jacob C. Creature academy: a system for virtual creature evolution. IEEE Trans Evol Comput. 2008:3289–97.

[81]

Reynolds CW. Flocks, herds, and schools: a distributed behavioral model. Comput Graph. 1987;21(4):25–34.

[82]

Vicsek T, Czirok A, Ben-Jacob E, Cohen II, Shochet O. Novel type of phase transition in a system of self-driven particles. Phys Rev Lett. 1995;75(6):1226–9.

[83]

Hickinbotham S, Stepney S. Environmental bias forces parasitism in Tierra. Proc. Eur. Conf. Artif. Life. 2015:294–301.

[84]

Ofria C, Wilke CO. Avida: a software platform for research in computational evolutionary biology. Artif Life. 2004;10(2):191–229.

[85]

Illman S. Hilbert’s fifth problem: review. J Math Sci. 2001;105(2):1843–7.

[86]

Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. The MIT Press; 1975.

[87]

Deb K, Member A, IEEE, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182–97.

[88]

Szigeti B, Gleeson P, Vella M, Khayrulin S, Palyanov A, Hokanson J, et al. Openworm: an open-science approach to modeling caenorhabditis elegans. Front Comput Neurosci. 2014;8:137.

[89]

Givon LE, Lazar AA. Neurokernel: an open source platform for emulating the fruit fly brain. PLoS One. 2016;11(1):e0146581.

[90]

Xu C, Hu S, Chen X. Artificial cells: from basic science to applications. Mater Today. 2016;19(9):516–32.

[91]

Gomez-Marquez J. What is life? Mol Biol Rep. 2021;48(8): 6223–30.

[92]

Liu Y, Sumpter DJT. Mathematical modeling reveals spontaneous emergence of self-replication in chemical reaction systems. J Biol Chem. 2018;293(49):18854–63.

[93]

Stewart JE. The origins of life: the managed-metabolism hypothesis. Found Sci. 2018;24(1):171–95.

[94]

Ameta S, Matsubara YJ, Chakraborty N, Krishna S, Thutupalli S. Self-reproduction and darwinian evolution in autocatalytic chemical reaction systems. Life. 2021;11(4):308.

[95]

Kauffman S. At home in the universe: the search for laws of self-organization and complexity. Oxford University Press; 1995.

[96]

Hordijk W, Steel M. Autocatalytic sets extended: dynamics, inhibition, and a generalization. J Syst Chem. 2012;3(1):5.

[97]

Liu Y, Hjerpe D, Lundh T. Side reactions do not completely disrupt linear self-replicating chemical reaction systems. Artif Life. 2020;26(3):327–37.

[98]

Liu Y. On the definition of a self-sustaining chemical reaction system and its role in heredity. Biol Direct. 2020;15(1):15.

[99]

Fontana W, Buss LW. “The arrival of the fittest”: toward a theory of biological organization. Bull Math Biol. 1994;56:1–64.

[100]

Dittrich P, di Fenizio PS. Chemical organisation theory. Bull Math Biol. 2007;69(4):1199–231.

[101]

Hordijk W, Steel M, Dittrich P. Autocatalytic sets and chemical organizations: modeling self-sustaining reaction networks at the origin of life. New J Phys. 2018;20(1):015011.

[102]

Sousa FL, Hordijk W, Steel M, Martin WF. Autocatalytic sets in E. coli metabolism. J Syst Chem. 2015;6(1):4.

[103]

Semenov SN, Kraft LJ, Ainla A, Zhao M, Baghbanzadeh M, Campbell VE, et al. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature. 2016;537(7622):656–60.

[104]

Sadownik JW, Mattia E, Nowak P, Otto S. Diversification of self-replicating molecules. Nat Chem. 2016;8(3):264–9.

[105]

Monreal Santiago G, Liu K, Browne WR, Otto S. Emergence of light-driven protometabolism on recruitment of a photocatalytic cofactor by a self-replicator. Nat Chem. 2020;12(7): 603–7.

[106]

Nanda J, Rubinov B, Ivnitski D, Mukherjee R, Shtelman E, Motro Y, et al. Emergence of native peptide sequences in prebiotic replication networks. Nat Commun. 2017;8(1):434.

[107]

Peng Z, Linderoth J, Baum DA. The hierarchical organization of autocatalytic reaction networks and its relevance to the origin of life. PLoS Comput Biol. 2022;18(9):e1010498.

[108]

Xavier JC, Hordijk W, Kauffman S, Steel M, Martin WF. Autocatalytic chemical networks at the origin of metabolism. Proc Biol Sci. 2020;287(1922):20192377.

[109]

Adam ZR, Fahrenbach AC, Jacobson SM, Kacar B, Zubarev DY. Radiolysis generates a complex organosynthetic chemical network. Sci Rep. 2021;11(1):1743.

[110]

Keller MA, Turchyn AV, Ralser M. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible archean ocean. Mol Syst Biol. 2014;10(4):725.

[111]

Pedersen RB, Rapp HT, Thorseth IH, Lilley MD, Barriga FJ, Baumberger T, et al. Discovery of a black smoker vent field and vent fauna at the arctic mid-ocean ridge. Nat Commun. 2010;1:126.

[112]

Georgieva MN, Little CTS, Maslennikov VV, Glover AG, Ayupova NR, Herrington RJ. The history of life at hydrothermal vents. Earth Sci Rev. 2021;217:103602.

[113]

Martin W, Russell MJ. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B Biol Sci. 2003;358(1429):59–83.

[114]

Martin W, Russell MJ. On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond B Biol Sci. 2007;362(1486):1887–925.

[115]

Roldan A, Hollingsworth N, Roffey A, Islam HU, Goodall JB, Catlow CR, et al. Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions. Chem Commun. 2015;51(35):7501–4.

[116]

Camprubi E, Jordan SF, Vasiliadou R, Lane N. Iron catalysis at the origin of life. IUBMB Life. 2017;69(6):373–81.

[117]

Belthle KS, Tüysüz H. Linking catalysis in biochemical and geochemical CO2 fixation at the emergence of life. Chem-CatChem. 2022:e202201462.

[118]

Varma SJ, Muchowska KB, Chatelain P, Moran J. Native iron reduces CO2 to intermediates and end-products of the acetyl-CoA pathway. Nat. Ecol. Evol. 2018;2(6):1019–24.

[119]

Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 2016;1(9):16116.

[120]

Kelley DS, Karson JA, Fruh-Green GL, Yoerger DR, Shank TM, Butterfield DA, et al. A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science. 2005;307(5714): 1428–34.

[121]

Kitadai N, Maruyama S. Origins of building blocks of life: a review. Geosci Front. 2018;9(4):1117–53.

[122]

Koonin EV, Martin W. On the origin of genomes and cells within inorganic compartments. Trends Genet. 2005;21(12): 647–54.

[123]

Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV. Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci USA. 2012;109(14):E821–30.

[124]

Patel BH, Percivalle C, Ritson DJ, Duffy CD, Sutherland JD. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat Chem. 2015;7(4):301–7.

[125]

Deamer D, Damer B, Kompanichenko V. Hydrothermal chemistry and the origin of cellular life. Astrobiology. 2019;19(12):1523–37.

[126]

Cairns-Smith AG. Genetic takeover: and the mineral origins of life. Cambridge University Press; 1987.

[127]

Zimmer C. What came before DNA? Discover; 2004.

[128]

Huang W, Ferris JP. One-step, regioselective synthesis of up to 50-mers of RNA oligomers by montmorillonite catalysis. J Am Chem Soc. 2006;128(27):8914–9.

[129]

Kloprogge JTT, Hartman H. Clays and the origin of life: the experiments. Life. 2022;12(2):259.

[130]

Baum DA. The origin and early evolution of life in chemical composition space. J Theor Biol. 2018;456:295–304.

[131]

Vincent L, Berg M, Krismer M, Saghafi SS, Cosby J, Sankari T, et al. Chemical ecosystem selection on mineral surfaces reveals long-term dynamics consistent with the spontaneous emergence of mutual catalysis. Life. 2019;9(4):80.

[132]

Xu Z, Hueckel T, Irvine WTM, Sacanna S. Transmembrane transport in inorganic colloidal cell-mimics. Nature. 2021;597(7875):220–4.

[133]

Thoren H, Gerlee P. Weak emergence and complexity. MIT Press; 2010.

[134]

Kolchinsky A, Wolpert DH. Semantic information, autonomous agency and non-equilibrium statistical physics. Interface Focus. 2018;8(6):20180041.

[135]

Liu Y, Mathis C, Bajczyk MD, Marshall SM, Wilbraham L, Cronin L. Exploring and mapping chemical space with molecular assembly trees. Sci Adv. 2021;7(39):eabj2465.

[136]

Liu Y, Di Z, Gerlee P. Ladderpath approach: how tinkering and reuse increase complexity and information. Entropy. 2022;24(8):1082.

[137]

Baum DA, Lehman N. Life’s late digital revolution and why it matters for the study of the origins of life. Life. 2017;7(3):34.

[138]

Szathmary E. The evolution of replicators. Philos Trans R Soc Lond B Biol Sci. 2000;355(1403):1669–76.

[139]

Deshpande S, Caspi Y, Meijering AE, Dekker C. Octanolassisted liposome assembly on chip. Nat Commun. 2016;7(1):10447.

[140]

Weiss M, Frohnmayer JP, Benk LT, Haller B, Janiesch JW, Heitkamp T, et al. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nat Mater. 2018;17(1):89–96.

[141]

Steel M, Xavier JC, Huson DH. The structure of autocatalytic networks, with application to early biochemistry. J R Soc Interface. 2020;17(171):20200488.

[142]

Lin G-M, Warden-Rothman R, Voigt CA. Retrosynthetic design of metabolic pathways to chemicals not found in nature. Curr Opin Struct Biol. 2019;14:82–107.

[143]

Mikulak-Klucznik B, Golebiowska P, Bayly AA, Popik O, Klucznik T, Szymkuc S, et al. Computational planning of the synthesis of complex natural products. Nature. 2020;588(7836):83–8.

[144]

Burger B, Maffettone PM, Gusev VV, Aitchison CM, Bai Y, Wang X, et al. A mobile robotic chemist. Nature. 2020;583(7815):237–41.

[145]

Steiner S, Wolf J, Glatzel S, Andreou A, Granda JM, Keenan G, et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science. 2019;363(6423):144.

[146]

Wu Z, Kan SBJ, Lewis RD, Wittmann BJ, Arnold FH. Machine learning-assisted directed protein evolution with combinatorial libraries. Proc Natl Acad Sci USA. 2019;116(18):8852–8.

[147]

Yang KK, Wu Z, Arnold FH. Machine-learning-guided directed evolution for protein engineering. Nat Methods. 2019;16(8): 687–94.

RIGHTS & PERMISSIONS

2023 The Authors. Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (789KB)

846

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/