Toward atomistic models of intact severe acute respiratory syndrome coronavirus 2 via Martini coarsegrained molecular dynamics simulations
Dali Wang, Jiaxuan Li, Lei Wang, Yipeng Cao, Bo Kang, Xiangfei Meng, Sai Li, Chen Song
Toward atomistic models of intact severe acute respiratory syndrome coronavirus 2 via Martini coarsegrained molecular dynamics simulations
The causative pathogen of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an enveloped virus assembled by a lipid envelope and multiple structural proteins. In this study, by integrating experimental data, structural modeling, as well as coarse-grained and all-atom molecular dynamics simulations, we constructed multiscale models of SARS-CoV-2. Our 500-ns coarse-grained simulation of the intact virion allowed us to investigate the dynamic behavior of the membrane-embedded proteins and the surrounding lipid molecules in situ. Our results indicated that the membrane-embedded proteins are highly dynamic, and certain types of lipids exhibit various binding preferences to specific sites of the membrane-embedded proteins. The equilibrated virion model was transformed into atomic resolution, which provided a 3D structure for scientific demonstration and can serve as a framework for future exascale all-atom molecular dynamics (MD) simulations. A short all-atom molecular dynamics simulation of 255 ps was conducted as a preliminary test for large-scale simulations of this complex system.
enveloped virus / molecular dynamics simulation / multiscale modeling / SARS-CoV-2
[1] |
Yao H, Song Y, Chen Y, Wu N, Xu J, Sun C, et al. Molecular architecture of the SARS-CoV-2 virus. Cell. 2020;183(3):730–8.
CrossRef
Google scholar
|
[2] |
Li S. Cryo-electron tomography of enveloped viruses. Trends Biochem Sci. 2021;47(2):173–86.
CrossRef
Google scholar
|
[3] |
Yu A, Pak AJ, He P, Monje-Galvan V, Casalino L, Gaieb Z, et al. A multiscale coarse-grained model of the SARS-CoV-2 virion. Biophys J. 2021;120(6):1097–104.
CrossRef
Google scholar
|
[4] |
Casalino L, Dommer AC, Gaieb Z, Barros EP, Sztain T, Ahn SH, et al. AI-driven multiscale simulations illuminate mechanisms of SARS-CoV-2 spike dynamics. Int J High Perform Comput Appl. 2021;35(5):432–51.
CrossRef
Google scholar
|
[5] |
Pezeshkian W, Grunewald F, Narykov O, Lu S, Wassenaar TA, Marrink SJ, et al. Molecular architecture and dynamics of SARS-CoV-2 envelope by integrative modeling. Structure. 2023;31(4):492–503.
CrossRef
Google scholar
|
[6] |
Dommer A, Casalino L, Kearns F, Rosenfeld M, Wauer N, Ahn SH, et al. #COVIDisAirborne: AI-enabled multiscale computational microscopy of delta SARS-CoV-2 in a respiratory aerosol. Int J High Perform Comput Appl. 2022;37:28–44.
CrossRef
Google scholar
|
[7] |
Wang B, Zhong C, Tieleman DP. Supramolecular organization of SARS-CoV and SARS-CoV-2 virions revealed by coarsegrained models of intact virus envelopes. J Chem Inf Model. 2022;62(1):176–86.
CrossRef
Google scholar
|
[8] |
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force Field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111(27):7812–24.
CrossRef
Google scholar
|
[9] |
Bracquemond D, Muriaux D. Betacoronavirus assembly: clues and perspectives for elucidating SARS-CoV-2 particle formation and egress. mBio. 2021;12:1–14.
CrossRef
Google scholar
|
[10] |
Corradi V, Mendez-Villuendas E, Ingólfsson HI, Gu RX, Siuda I, Melo MN, et al. Lipid-protein interactions are unique fingerprints for membrane proteins. ACS Cent Sci. 2018;4(6): 709–17.
CrossRef
Google scholar
|
[11] |
Liao C, Zhao X, Liu J, Schneebeli ST, Shelley JC, Li J. Capturing the multiscale dynamics of membrane protein complexes with all-atom, mixed-resolution, and coarse-grained models. Phys Chem Chem Phys. 2017;19(13):9181–8.
CrossRef
Google scholar
|
[12] |
Ramadurai S, Holt A, Schäfer LV, Krasnikov VV, Rijkers DT, Marrink SJ, et al. Influence of hydrophobic mismatch and amino acid composition on the lateral diffusion of transmembrane peptides. Biophys J. 2010;99(5):1447–54.
CrossRef
Google scholar
|
[13] |
Periole X, Huber T, Marrink SJ, Sakmar TP. G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J Am Chem Soc. 2007;129(33):10126–32.
CrossRef
Google scholar
|
[14] |
Choi YK, Cao Y, Frank M, Woo H, Park SJ, Yeom MS, et al. Structure, dynamics, receptor binding, and antibody binding of the fully glycosylated full-length SARS-CoV-2 spike protein in a viral membrane. J Chem Theor Comput. 2021;17(4):2479–87.
CrossRef
Google scholar
|
[15] |
Bangaru S, Ozorowski G, Turner HL, Antanasijevic A, Huang D, Wang X, et al. Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. Science. 2020;370(6520):1089–94.
CrossRef
Google scholar
|
[16] |
Ermakova E, Zuev Y. Effect of ergosterol on the fungal membrane properties. All-atom and coarse-grained molecular dynamics study. Chem Phys Lipids. 2017;209:45–53.
CrossRef
Google scholar
|
[17] |
Ramadurai S, Holt A, Krasnikov V, van den Bogaart G, Killian JA, Poolman B. Lateral diffusion of membrane proteins. J Am Chem Soc. 2009;131(35):12650–6.
CrossRef
Google scholar
|
[18] |
Ramadurai S, Duurkens R, Krasnikov VV, Poolman B. Lateral diffusion of membrane proteins: consequences of hydrophobic mismatch and lipid composition. Biophys J. 2010;99(5): 1482–9.
CrossRef
Google scholar
|
[19] |
Ye H, Song Y, Zhang Z, Li S. Cryo-electron tomography: the resolution revolution and a surge of in situ virological discoveries. Annu Rev Biophys. 2023;52(1):339–60.
CrossRef
Google scholar
|
[20] |
Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ. The MARTINI coarse-grained force field: extension to proteins. J Chem Theor Comput. 2008;4(5):819–34.
CrossRef
Google scholar
|
[21] |
Qi Y, Ingólfsson HI, Cheng X, Lee J, Marrink SJ, Im W. CHARMM-GUI Martini maker for coarse-grained simulations with the Martini force field. J Chem Theor Comput. 2015;11(9):4486–94.
CrossRef
Google scholar
|
[22] |
Woo H, Park SJ, Choi YK, Park T, Tanveer M, Cao Y, et al. Developing a fully glycosylated full-length SARS-CoV-2 spike protein model in a viral membrane. J Phys Chem B. 2020;124(33): 7128–37.
CrossRef
Google scholar
|
[23] |
Turoňová B, Sikora M, Schurmann C, Hagen W, Welsch S, Blanc F, et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science. 2020;370: 203–8.
CrossRef
Google scholar
|
[24] |
Casalino L, Gaieb Z, Goldsmith JA, Hjorth CK, Dommer AC, Harbison AM, et al. Beyond shielding: the roles of glycans in the SARS-CoV-2 spike protein. ACS Cent Sci. 2020;6(10): 1722–34.
CrossRef
Google scholar
|
[25] |
Casares D, Escrib PV, Rosselló CA. Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int J Mol Sci. 2019;20(9):2167–79.
CrossRef
Google scholar
|
[26] |
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:1–8.
CrossRef
Google scholar
|
[27] |
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684–90.
CrossRef
Google scholar
|
[28] |
Zhou T, Tsybovsky Y, Gorman J, Rapp M, Cerutti G, Chuang GY, et al. Cryo-EM structures delineate a pH-dependent switch that mediates endosomal positioning of SARS-CoV-2 spike receptor-binding domains. SSRN Electron J. 2020;28:867–80.
|
[29] |
Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM, et al. Distinct conformational states of SARS-CoV-2 spike protein. Science. 2020;369(6511):1586–92.
CrossRef
Google scholar
|
[30] |
Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779–815.
CrossRef
Google scholar
|
[31] |
Fiser A, Kinh Gian Do R, Sali A. Modeling of loops in protein structures. Protein Sci. 2000;9:1753–73.
CrossRef
Google scholar
|
[32] |
Heffernan R, Yang Y, Paliwal K, Zhou Y. Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility. Bioinformatics. 2017;33(18):2842–9.
CrossRef
Google scholar
|
[33] |
Yang TJ, Chang YC, Ko TP, Draczkowski P, Chien YC, Chang YC, et al. Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans. Proc Natl Acad Sci USA. 2020;117:1438–46.
CrossRef
Google scholar
|
[34] |
Watanabe Y, Berndsen ZT, Raghwani J, Seabright GE, Allen JD, Pybus OG, et al. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nat Commun. 2020;11:1–10.
CrossRef
Google scholar
|
[35] |
Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Sitespecific glycan analysis of the SARS-CoV-2 spike. Science. 2020;369(6501):330–3.
CrossRef
Google scholar
|
[36] |
Shajahan A, Supekar NT, Gleinich AS, Azadi P. Deducing the N-and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology. 2020;30(12):981–8.
CrossRef
Google scholar
|
[37] |
Park SJ, Lee J, Qi Y, Kern NR, Lee HS, Jo S, et al. CHARMMGUIGlycan Modelerfor modeling and simulation of carbohydrates and glycoconjugates. Glycobiology. 2019;29(4):320–31.
CrossRef
Google scholar
|
[38] |
Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods. 2016;14(1): 71–3.
CrossRef
Google scholar
|
[39] |
Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 2010;174(1):11–22.
CrossRef
Google scholar
|
[40] |
Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):69–90.
CrossRef
Google scholar
|
[41] |
Pierce BG, Hourai Y, Weng Z. Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One. 2011;6:1–5.
CrossRef
Google scholar
|
[42] |
de Haan CAM, Vennema H, Rottier PJM. Assembly of the coronavirus envelope: homotypic interactions between the M proteins. J Virol. 2000;74(11):4967–78.
CrossRef
Google scholar
|
[43] |
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with Alpha-Fold. Nature. 2021;596(7873):583–9.
CrossRef
Google scholar
|
[44] |
Zhang Z, Nomura N, Muramoto Y, Ekimoto T, Uemura T, Liu K, et al. Structure of SARS-CoV-2 membrane protein essential for virus assembly. Nat Commun. 2022;13:1–7.
CrossRef
Google scholar
|
[45] |
Mandala VS, McKay MJ, Shcherbakov AA, Dregni AJ, Kolocouris A, Hong M. Structure and drug binding of theSARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat Struct Mol Biol. 2020;27(12):1202–8.
CrossRef
Google scholar
|
[46] |
Wang S, Li W, Liu S, Xu J. RaptorX-Property: a web server for protein structure property prediction. Nucleic Acids Res. 2016;44:430–5.
CrossRef
Google scholar
|
[47] |
Wang L, Zhang J, Wang D, Song C. Membrane contact probability: an essential and predictive character for the structural and functional studies of membrane proteins. PLoS Comput Biol. 2022;18(3): e1009972.
CrossRef
Google scholar
|
[48] |
Heo L, Feig M. Modeling of Severe Acute Respiratory Syndrome Coronavirus 2 Proteins by Machine Learning and Physics-Based Refinement. bioRxiv.2020. https://doi.org/10.1101/2020.03.25.008904
|
[49] |
Monje-Galvan V, Voth GA. Molecular interactions of the M and E integral membrane proteins of SARS-CoV-2. Faraday Discuss. 2021;232:49–67.
CrossRef
Google scholar
|
[50] |
Keane SC, Liu P, Leibowitz JL, Giedroc DP. Functional transcriptional regulatory sequence (TRS) RNA binding and helix destabilizing determinants of murine hepatitis virus (MHV) nucleocapsid (N) protein. J Biol Chem. 2012;287(10):7063–73.
CrossRef
Google scholar
|
[51] |
Tan YW, Fang S, Fan H, Lescar J, Liu D. Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells. Nucleic Acids Res. 2006;34(17): 4816–25.
CrossRef
Google scholar
|
[52] |
Grossoehme NE, Li L, Keane SC, Liu P, Dann CE, Leibowitz JL, et al. Coronavirus N protein N-terminal domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS-cTRS RNA duplexes. J Mol Biol. 2009;394(3): 544–57.
CrossRef
Google scholar
|
[53] |
Saikatendu KS, Joseph JS, Subramanian V, Neuman BW, Buchmeier MJ, Stevens RC, et al. Ribonucleocapsid Formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. J Virol. 2007;81(8):3913–21.
CrossRef
Google scholar
|
[54] |
Lu S, Ye Q, Singh D, Cao Y, Diedrich JK, Yates JR, et al. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nat Commun. 2021;12:502–11.
CrossRef
Google scholar
|
[55] |
Dinesh DC, Chalupska D, Silhan J, Koutna E, Nencka R, Veverka V, et al. Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathog. 2020;16:1–16.
CrossRef
Google scholar
|
[56] |
Zinzula L, Basquin J, Bohn S, Beck F, Klumpe S, Pfeifer G, et al. High-resolution structure and biophysical characterization of the nucleocapsid phosphoprotein dimerization domain from the Covid-19 severe acute respiratory syndrome coronavirus 2. Biochem Biophys Res Commun. 2020;538:54–62.
CrossRef
Google scholar
|
[57] |
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30(1): 70–82.
CrossRef
Google scholar
|
[58] |
Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, et al. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol. 2006;80(16):7918–28.
CrossRef
Google scholar
|
[59] |
Bar-On YM, Flamholz A, Phillips R, Milo R. SARS-CoV-2 (COVID-19) by the numbers. eLife. 2020;9:697–8.
CrossRef
Google scholar
|
[60] |
Vickery ON, Stansfeld PJ. CG2AT2: an enhanced fragment-based approach for serial multi-scale molecular dynamics simulations. J Chem Theor Comput. 2021;17(10):6472–82.
CrossRef
Google scholar
|
[61] |
Darden T, York D, Pedersen L. Particle mesh Ewald: an N·log (N) method for Ewald sums in large systems. J Chem Phys. 1993;98(12):10089–92.
CrossRef
Google scholar
|
/
〈 | 〉 |