Toward atomistic models of intact severe acute respiratory syndrome coronavirus 2 via Martini coarsegrained molecular dynamics simulations

Dali Wang , Jiaxuan Li , Lei Wang , Yipeng Cao , Bo Kang , Xiangfei Meng , Sai Li , Chen Song

Quant. Biol. ›› 2023, Vol. 11 ›› Issue (4) : 421 -433.

PDF (1881KB)
Quant. Biol. ›› 2023, Vol. 11 ›› Issue (4) :421 -433. DOI: 10.1002/qub2.20
RESEARCH ARTICLE

Toward atomistic models of intact severe acute respiratory syndrome coronavirus 2 via Martini coarsegrained molecular dynamics simulations

Author information +
History +
PDF (1881KB)

Abstract

The causative pathogen of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an enveloped virus assembled by a lipid envelope and multiple structural proteins. In this study, by integrating experimental data, structural modeling, as well as coarse-grained and all-atom molecular dynamics simulations, we constructed multiscale models of SARS-CoV-2. Our 500-ns coarse-grained simulation of the intact virion allowed us to investigate the dynamic behavior of the membrane-embedded proteins and the surrounding lipid molecules in situ. Our results indicated that the membrane-embedded proteins are highly dynamic, and certain types of lipids exhibit various binding preferences to specific sites of the membrane-embedded proteins. The equilibrated virion model was transformed into atomic resolution, which provided a 3D structure for scientific demonstration and can serve as a framework for future exascale all-atom molecular dynamics (MD) simulations. A short all-atom molecular dynamics simulation of 255 ps was conducted as a preliminary test for large-scale simulations of this complex system.

Keywords

enveloped virus / molecular dynamics simulation / multiscale modeling / SARS-CoV-2

Cite this article

Download citation ▾
Dali Wang, Jiaxuan Li, Lei Wang, Yipeng Cao, Bo Kang, Xiangfei Meng, Sai Li, Chen Song. Toward atomistic models of intact severe acute respiratory syndrome coronavirus 2 via Martini coarsegrained molecular dynamics simulations. Quant. Biol., 2023, 11(4): 421-433 DOI:10.1002/qub2.20

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yao H, Song Y, Chen Y, Wu N, Xu J, Sun C, et al. Molecular architecture of the SARS-CoV-2 virus. Cell. 2020;183(3):730–8.

[2]

Li S. Cryo-electron tomography of enveloped viruses. Trends Biochem Sci. 2021;47(2):173–86.

[3]

Yu A, Pak AJ, He P, Monje-Galvan V, Casalino L, Gaieb Z, et al. A multiscale coarse-grained model of the SARS-CoV-2 virion. Biophys J. 2021;120(6):1097–104.

[4]

Casalino L, Dommer AC, Gaieb Z, Barros EP, Sztain T, Ahn SH, et al. AI-driven multiscale simulations illuminate mechanisms of SARS-CoV-2 spike dynamics. Int J High Perform Comput Appl. 2021;35(5):432–51.

[5]

Pezeshkian W, Grunewald F, Narykov O, Lu S, Wassenaar TA, Marrink SJ, et al. Molecular architecture and dynamics of SARS-CoV-2 envelope by integrative modeling. Structure. 2023;31(4):492–503.

[6]

Dommer A, Casalino L, Kearns F, Rosenfeld M, Wauer N, Ahn SH, et al. #COVIDisAirborne: AI-enabled multiscale computational microscopy of delta SARS-CoV-2 in a respiratory aerosol. Int J High Perform Comput Appl. 2022;37:28–44.

[7]

Wang B, Zhong C, Tieleman DP. Supramolecular organization of SARS-CoV and SARS-CoV-2 virions revealed by coarsegrained models of intact virus envelopes. J Chem Inf Model. 2022;62(1):176–86.

[8]

Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force Field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111(27):7812–24.

[9]

Bracquemond D, Muriaux D. Betacoronavirus assembly: clues and perspectives for elucidating SARS-CoV-2 particle formation and egress. mBio. 2021;12:1–14.

[10]

Corradi V, Mendez-Villuendas E, Ingólfsson HI, Gu RX, Siuda I, Melo MN, et al. Lipid-protein interactions are unique fingerprints for membrane proteins. ACS Cent Sci. 2018;4(6): 709–17.

[11]

Liao C, Zhao X, Liu J, Schneebeli ST, Shelley JC, Li J. Capturing the multiscale dynamics of membrane protein complexes with all-atom, mixed-resolution, and coarse-grained models. Phys Chem Chem Phys. 2017;19(13):9181–8.

[12]

Ramadurai S, Holt A, Schäfer LV, Krasnikov VV, Rijkers DT, Marrink SJ, et al. Influence of hydrophobic mismatch and amino acid composition on the lateral diffusion of transmembrane peptides. Biophys J. 2010;99(5):1447–54.

[13]

Periole X, Huber T, Marrink SJ, Sakmar TP. G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J Am Chem Soc. 2007;129(33):10126–32.

[14]

Choi YK, Cao Y, Frank M, Woo H, Park SJ, Yeom MS, et al. Structure, dynamics, receptor binding, and antibody binding of the fully glycosylated full-length SARS-CoV-2 spike protein in a viral membrane. J Chem Theor Comput. 2021;17(4):2479–87.

[15]

Bangaru S, Ozorowski G, Turner HL, Antanasijevic A, Huang D, Wang X, et al. Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate. Science. 2020;370(6520):1089–94.

[16]

Ermakova E, Zuev Y. Effect of ergosterol on the fungal membrane properties. All-atom and coarse-grained molecular dynamics study. Chem Phys Lipids. 2017;209:45–53.

[17]

Ramadurai S, Holt A, Krasnikov V, van den Bogaart G, Killian JA, Poolman B. Lateral diffusion of membrane proteins. J Am Chem Soc. 2009;131(35):12650–6.

[18]

Ramadurai S, Duurkens R, Krasnikov VV, Poolman B. Lateral diffusion of membrane proteins: consequences of hydrophobic mismatch and lipid composition. Biophys J. 2010;99(5): 1482–9.

[19]

Ye H, Song Y, Zhang Z, Li S. Cryo-electron tomography: the resolution revolution and a surge of in situ virological discoveries. Annu Rev Biophys. 2023;52(1):339–60.

[20]

Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ. The MARTINI coarse-grained force field: extension to proteins. J Chem Theor Comput. 2008;4(5):819–34.

[21]

Qi Y, Ingólfsson HI, Cheng X, Lee J, Marrink SJ, Im W. CHARMM-GUI Martini maker for coarse-grained simulations with the Martini force field. J Chem Theor Comput. 2015;11(9):4486–94.

[22]

Woo H, Park SJ, Choi YK, Park T, Tanveer M, Cao Y, et al. Developing a fully glycosylated full-length SARS-CoV-2 spike protein model in a viral membrane. J Phys Chem B. 2020;124(33): 7128–37.

[23]

Turoňová B, Sikora M, Schurmann C, Hagen W, Welsch S, Blanc F, et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science. 2020;370: 203–8.

[24]

Casalino L, Gaieb Z, Goldsmith JA, Hjorth CK, Dommer AC, Harbison AM, et al. Beyond shielding: the roles of glycans in the SARS-CoV-2 spike protein. ACS Cent Sci. 2020;6(10): 1722–34.

[25]

Casares D, Escrib PV, Rosselló CA. Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int J Mol Sci. 2019;20(9):2167–79.

[26]

Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:1–8.

[27]

Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684–90.

[28]

Zhou T, Tsybovsky Y, Gorman J, Rapp M, Cerutti G, Chuang GY, et al. Cryo-EM structures delineate a pH-dependent switch that mediates endosomal positioning of SARS-CoV-2 spike receptor-binding domains. SSRN Electron J. 2020;28:867–80.

[29]

Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM, et al. Distinct conformational states of SARS-CoV-2 spike protein. Science. 2020;369(6511):1586–92.

[30]

Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779–815.

[31]

Fiser A, Kinh Gian Do R, Sali A. Modeling of loops in protein structures. Protein Sci. 2000;9:1753–73.

[32]

Heffernan R, Yang Y, Paliwal K, Zhou Y. Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility. Bioinformatics. 2017;33(18):2842–9.

[33]

Yang TJ, Chang YC, Ko TP, Draczkowski P, Chien YC, Chang YC, et al. Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans. Proc Natl Acad Sci USA. 2020;117:1438–46.

[34]

Watanabe Y, Berndsen ZT, Raghwani J, Seabright GE, Allen JD, Pybus OG, et al. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nat Commun. 2020;11:1–10.

[35]

Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Sitespecific glycan analysis of the SARS-CoV-2 spike. Science. 2020;369(6501):330–3.

[36]

Shajahan A, Supekar NT, Gleinich AS, Azadi P. Deducing the N-and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology. 2020;30(12):981–8.

[37]

Park SJ, Lee J, Qi Y, Kern NR, Lee HS, Jo S, et al. CHARMMGUIGlycan Modelerfor modeling and simulation of carbohydrates and glycoconjugates. Glycobiology. 2019;29(4):320–31.

[38]

Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods. 2016;14(1): 71–3.

[39]

Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 2010;174(1):11–22.

[40]

Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):69–90.

[41]

Pierce BG, Hourai Y, Weng Z. Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One. 2011;6:1–5.

[42]

de Haan CAM, Vennema H, Rottier PJM. Assembly of the coronavirus envelope: homotypic interactions between the M proteins. J Virol. 2000;74(11):4967–78.

[43]

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with Alpha-Fold. Nature. 2021;596(7873):583–9.

[44]

Zhang Z, Nomura N, Muramoto Y, Ekimoto T, Uemura T, Liu K, et al. Structure of SARS-CoV-2 membrane protein essential for virus assembly. Nat Commun. 2022;13:1–7.

[45]

Mandala VS, McKay MJ, Shcherbakov AA, Dregni AJ, Kolocouris A, Hong M. Structure and drug binding of theSARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat Struct Mol Biol. 2020;27(12):1202–8.

[46]

Wang S, Li W, Liu S, Xu J. RaptorX-Property: a web server for protein structure property prediction. Nucleic Acids Res. 2016;44:430–5.

[47]

Wang L, Zhang J, Wang D, Song C. Membrane contact probability: an essential and predictive character for the structural and functional studies of membrane proteins. PLoS Comput Biol. 2022;18(3): e1009972.

[48]

Heo L, Feig M. Modeling of Severe Acute Respiratory Syndrome Coronavirus 2 Proteins by Machine Learning and Physics-Based Refinement. bioRxiv.2020. https://doi.org/10.1101/2020.03.25.008904

[49]

Monje-Galvan V, Voth GA. Molecular interactions of the M and E integral membrane proteins of SARS-CoV-2. Faraday Discuss. 2021;232:49–67.

[50]

Keane SC, Liu P, Leibowitz JL, Giedroc DP. Functional transcriptional regulatory sequence (TRS) RNA binding and helix destabilizing determinants of murine hepatitis virus (MHV) nucleocapsid (N) protein. J Biol Chem. 2012;287(10):7063–73.

[51]

Tan YW, Fang S, Fan H, Lescar J, Liu D. Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells. Nucleic Acids Res. 2006;34(17): 4816–25.

[52]

Grossoehme NE, Li L, Keane SC, Liu P, Dann CE, Leibowitz JL, et al. Coronavirus N protein N-terminal domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS-cTRS RNA duplexes. J Mol Biol. 2009;394(3): 544–57.

[53]

Saikatendu KS, Joseph JS, Subramanian V, Neuman BW, Buchmeier MJ, Stevens RC, et al. Ribonucleocapsid Formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. J Virol. 2007;81(8):3913–21.

[54]

Lu S, Ye Q, Singh D, Cao Y, Diedrich JK, Yates JR, et al. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nat Commun. 2021;12:502–11.

[55]

Dinesh DC, Chalupska D, Silhan J, Koutna E, Nencka R, Veverka V, et al. Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathog. 2020;16:1–16.

[56]

Zinzula L, Basquin J, Bohn S, Beck F, Klumpe S, Pfeifer G, et al. High-resolution structure and biophysical characterization of the nucleocapsid phosphoprotein dimerization domain from the Covid-19 severe acute respiratory syndrome coronavirus 2. Biochem Biophys Res Commun. 2020;538:54–62.

[57]

Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30(1): 70–82.

[58]

Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, et al. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol. 2006;80(16):7918–28.

[59]

Bar-On YM, Flamholz A, Phillips R, Milo R. SARS-CoV-2 (COVID-19) by the numbers. eLife. 2020;9:697–8.

[60]

Vickery ON, Stansfeld PJ. CG2AT2: an enhanced fragment-based approach for serial multi-scale molecular dynamics simulations. J Chem Theor Comput. 2021;17(10):6472–82.

[61]

Darden T, York D, Pedersen L. Particle mesh Ewald: an N·log (N) method for Ewald sums in large systems. J Chem Phys. 1993;98(12):10089–92.

RIGHTS & PERMISSIONS

2023 The Authors. Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (1881KB)

493

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/