Emotional dampening in hypertension: Impaired recognition of implicit emotional content in auditory and cross-modal stimuli
Received date: 28 Jan 2023
Accepted date: 04 Sep 2023
Published date: 20 Jan 2024
Copyright
Research shows a reduced responsivity to implicit as well as explicit facial emotion recognition (emotional dampening) in prehypertensives and hypertensives. This study explored auditory and audiovisual emotion recognition in prehypertensives and hypertensives. Participants (N = 175) who were normotensives, prehypertensives, and hypertensives (n = 57, 58, and 60, respectively) completed an auditory implicit task (matching auditory target with auditory distractors) and two cross-modal implicit tasks (matching visual target with auditory distractors, and vice-versa), and an auditory explicit task (labelling emotions in audio-clips). Findings showed an aberrant speed–accuracy trade-off, where prehypertensives focused more on accuracy at the cost of speed while hypertensives showed the opposite. Discriminant function analysis revealed that blood pressure (BP)-associated emotional dampening is a highly specific but moderately sensitive correlate of hypertension. Our study highlights that prehypertensives and hypertensives demonstrate emotional dampening in implicit (but not explicit) auditory emotion recognition and a greater deficit for auditory than visual recognition of implicit emotions. Findings show emotional dampening as an observable correlate of elevated BP and hypertension.
Key words: emotional dampening; explicit; hypertension; implicit; prehypertension
Meenakshi Shukla , Rakesh Pandey . Emotional dampening in hypertension: Impaired recognition of implicit emotional content in auditory and cross-modal stimuli[J]. Psych Journal, 2024 , 13(1) : 124 -138 . DOI: 10.1002/pchj.704
1 |
Alexander, F. (1939). Psychological aspects of medicine. Psychosomatic Medicine, 1, 7–18.
|
2 |
Aslam, M., & Alghamdi, N. G. (2017). Anger and interpersonal relationships: Social life in adolescence. European Online Journal of Natural and Social Sciences, 6(2), 221–227.
|
3 |
Bruehl, S., & Chung, O. Y. (2004). Interactions between the cardiovascular and pain regulatory systems: an updated review of mechanisms and possible alterations in chronic pain. Neuroscience & Biobehavioral Reviews, 28(4), 395–414.
|
4 |
Cepeda, N. J., & Munakata, Y. (2007). Why do children perseverate when they seem to know better: Graded working memory, or directed inhibition? Psychonomic Bulletin & Review, 14(6), 1058–1065.
|
5 |
Charkoudian, N., & Rabbitts, J. A. (2009). Sympathetic neural mechanisms in human cardiovascular health and disease. Mayo Clinic Proceedings, 84(9), 822–830.
|
6 |
Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo, J. L., Jr., Jones, D. W., Materson, B. J., Oparil, S., Wright, J. T., Jr., Roccella, E. J., & The National High Blood Pressure Education Program Coordinating Committee. (2003). The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: The JNC 7 Report. The Journal of the American Medical Association, 289(19), 2560–2572.
|
7 |
Elbert, T., Dworkin, B. R., Rau, H., Pauli, P., Birbaumer, N., Droste, C., & Brunia, C. H. M. (1994). Sensory effects of baroreceptor activation and perceived stress together predict long-term blood pressure elevations. International Journal of Behavioral Medicine, 1(3), 215–228.
|
8 |
Elfenbein, H. A., & Ambady, N. (2002). Is there an in-group advantage in emotion recognition? Psychological Bulletin, 128(2), 203–235.
|
9 |
Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: a latent-variable analysis. Journal of Experimental Psychology: General, 133(1), 101–135.
|
10 |
Greiner, M., Pfeiffer, D., & Smith, R. D. (2000). Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Preventive Veterinary Medicine, 45(1–2), 23–41.
|
11 |
Ihle, A., Gouveia, É. R., Gouveia, B. R., Freitas, D. L., Jurema, J., Machado, F. T., & Kliegel, M. (2017). The relation of hypertension to performance in immediate and delayed cued recall and working memory in old age: The role of cognitive reserve. Journal of Aging and Health, 30, 1171–1187.
|
12 |
Jonas, B. S., Franks, P., & Ingram, D. D. (1997). Are symptoms of anxiety and depression risk factors for hypertension? Longitudinal evidence from the National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study. Archives of Family Medicine, 6(1), 43–49.
|
13 |
Kanade, T., Cohn, J. F., & Tian, Y. (2000). Comprehensive database for facial expression analysis. In Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition (FG'00) (pp. 46–53). Institute of Electrical and Electronics Engineers.
|
14 |
Khairnar, M., Kumar, P., & Kusumakar, A. (2021). Updated BG prasad socioeconomic status classification for the year 2021. Journal of Indian Association of Public Health Dentistry, 19(2), 155.
|
15 |
Koolagudi, S. G., Reddy, R., Yadav, J., & Rao, K. S. (2011). IITKGP-SEHSC: Hindi speech corpus for emotion analysis. In Devices and Communications (ICDeCom), 2011 International Conference on (pp. 1–5). IEEE.
|
16 |
Kougias, P., Weakley, S. M., Yao, Q., Lin, P. H., & Chen, C. (2010). Arterial baroreceptors in the management of systemic hypertension. Medical Science Monitor, 16(1), RA1-RA8.
|
17 |
Krousel-Wood, M. A., & Frohlich, E. D. (2010). Hypertension and depression: coexisting barriers to medication adherence. The Journal of Clinical Hypertension, 12(7), 481–486.
|
18 |
Loveless, J. P., Nicoletta, A. J., Winters, A. R., Carels, R. A., Wuensch, K. L., Whited, M. C., McCubbin, J. A., & Everhart, D. E. (2018). Exploring the relationship between frontal asymmetry and emotional dampening. International Journal of Psychophysiology, 123, 8–16.
|
19 |
Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., Ambadar, Z., & Matthews, I. (2010). The Extended Cohn-Kanade Dataset (CK+): A complete expression dataset for action unit and emotion-specified expression. In Proceedings of the Third International Workshop on CVPR for Human Communicative Behavior Analysis (CVPR4HB 2010) (pp. 94–101). Institute of Electrical and Electronics Engineers.
|
20 |
Markovitz, J. H., Matthews, K. A., Wing, R. R., Kuller, L. H., & Meilahn, E. N. (1991). Psychological, biological and health behavior predictors of blood pressure changes in middle-aged women. Journal of Hypertension, 9(5), 399–406.
|
21 |
McCubbin, J. A., Helfer, S. G., Switzer, F. S., III, Galloway, C., & Griffith, W. V. (2006). Opioid analgesia in persons at risk for hypertension. Psychosomatic Medicine, 68(1), 116–120.
|
22 |
McCubbin, J. A., Loveless, J. P., Graham, J. G., Hall, G. A., Bart, R. M., Moore, D. D., Merritt, M. M., Lane, R. D., & Thayer, J. F. (2014). Emotional Dampening in Persons with Elevated Blood Pressure: Affect Dysregulation and Risk for Hypertension. Annals of Behavioral Medicine, 47(1), 111–119.
|
23 |
McCubbin, J. A., Merritt, M. M., Sollers, J. J., 3rd, Evans, M. K., Zonderman, A. B., Lane, R. D., & Thayer, J. F. (2011). Cardiovascular emotional dampening: the relationship between blood pressure and recognition of emotion. Psychosomatic Medicine, 73(9), 743–750.
|
24 |
McCubbin, J. A., Nathan, A., Hibdon, M. A., Castillo, A. V., Graham, J. G., & Switzer, F. S., III. (2018). Blood pressure, emotional dampening, and risk behavior: implications for hypertension development. Psychosomatic Medicine, 80(6), 544–550.
|
25 |
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338(3), 171–179.
|
26 |
Mini, A., Rau, H., Montoya, P., Palomba, D., & Birbaumer, N. (1995). Baroreceptor cortical effects, emotions and pain. International Journal of Psychophysiology, 19(1), 67–77.
|
27 |
Oparil, S., Zaman, M. A., & Calhoun, D. A. (2003). Pathogenesis of hypertension. Annals of Internal Medicine, 139(9), 761–776.
|
28 |
Patel, V., & Jain, A. (2017). Assessment of emotional intelligent in hypertensive adults and normal adults: a comparative study. Journal of Advanced Medical and Dental Sciences Research, 5(7), 9–12.
|
29 |
Pury, C. L. S., McCubbin, J. A., Helfer, S. G., Galloway, C., & McMullen, L. J. (2004). Elevated resting blood pressure and dampened emotional response. Psychosomatic Medicine, 66(4), 583–587.
|
30 |
Rau, H., Brody, S., Larbig, W., Pauli, P., Vöhringer, M., Harsch, B., Kröling, P., & Birbaumer, N. (1994). Effects of PRES baroreceptor stimulation on thermal and mechanical pain threshold in borderline hypertensives and normotensives. Psychophysiology, 31(5), 480–485.
|
31 |
Sabu, P., Stuldreher, I. V., Kaneko, D., & Brouwer, A. M. (2022). A review on the role of affective stimuli in event-related frontal alpha asymmetry. Frontiers in Computer Science, 4, 869123.
|
32 |
Shukla, M. (2018). Emotion recognition as a unitary construct independent of sensory modality and level of processing. In Evidence from a novel emotion recognition test battery [Conference presentation]. 4th International Conference of Indian Academy of Health Psychology (ICIAHP-2018). Indian Academy of Health Psychology.
|
33 |
Shukla, M., Lau, J. Y. F., Lissek, S., Pandey, R., & Kumari, V. (2020). Reduced emotional responsiveness in individuals with marginal elevation in blood pressure within the normal range: Evidence from altered affect-modulated startle response. Int J Psychophysiol, 153, 18–26.
|
34 |
Shukla, M., Pandey, R., Jain, D., & Lau, J. Y. F. (2018). Poor Emotional Responsiveness in Clinical Hypertension: Reduced Accuracy in the Labelling and Matching of Emotional Faces amongst Individuals with Hypertension and Prehypertension. Psychology and Health, 33(6), 1–18.
|
35 |
Shukla, M., Pandey, R., & Lau, J. Y. F. (2019). Assessing emotional processing difficulties in normotensive individuals with high and isolated blood pressure elevations. International Journal of Psychology, 54(2), 214–222.
|
36 |
Weinberger, J., Kelner, S., & McClelland, D. (1997). The effects of subliminal symbiotic stimulation on free-response and self-report mood. Journal of Nervous and Mental Disease, 185(10), 599–605.
|
37 |
Yan, L. L., Liu, K., Matthews, K. A., Daviglus, M. L., Ferguson, T. F., & Kiefe, C. I. (2003). Psychosocial factors and risk of hypertension: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Journal of the American Medical Association, 290(16), 2138–2148.
|
38 |
Yang, Y. C., Boen, C., & Mullan Harris, K. (2015). Social relationships and hypertension in late life: evidence from a nationally representative longitudinal study of older adults. Journal of Aging and Health, 27(3), 403–431.
|
39 |
Zhang, Y., Chen, Y., & Ma, L. (2018). Depression and cardiovascular disease in elderly: current understanding. Journal of Clinical Neuroscience, 47, 1–5.
|
40 |
Zhu, T., Xue, J., & Chen, S. (2019). Social support and depression related to older adults' hypertension control in rural China. The American Journal of Geriatric Psychiatry, 27(11), 1268–1276.
|
/
〈 |
|
〉 |