The role of arousal in the estimation of time-to-collision of threatening stimuli

Caiwen Li, Yuming Xuan, Patrick Bruns, Xiaolan Fu

PDF
Psych Journal ›› 2024, Vol. 13 ›› Issue (3) : 376-386. DOI: 10.1002/pchj.762
ORIGINAL ARTICLE

The role of arousal in the estimation of time-to-collision of threatening stimuli

Author information +
History +

Abstract

The accurate estimation of time-to-collision (TTC) is essential for the survival of organisms. Previous studies have revealed that the emotional properties of approaching stimuli can influence the estimation of TTC, indicating that approaching threatening stimuli are perceived to collide with the observers earlier than they actually do, and earlier than non-threatening stimuli. However, not only are threatening stimuli more negative in valence, but they also have higher arousal compared to non-threatening stimuli. Up to now, the effect of arousal on TTC estimation remains unclear. In addition, inconsistent findings may result from the different experimental settings employed in previous studies. To investigate whether the underestimation of TTC is attributed to threat or high arousal, three experiments with the same settings were conducted. In Experiment 1, the underestimation of TTC estimation of threatening stimuli was replicated when arousal was not controlled, in comparison to non-threatening stimuli. In Experiments 2 and 3, the underestimation effect of threatening stimuli disappeared when compared to positive stimuli with similar arousal. These findings suggest that being threatening alone is not sufficient to explain the underestimation effect, and arousal also plays a significant role in the TTC estimation of approaching stimuli. Further studies are required to validate the effect of arousal on TTC estimation, as no difference was observed in Experiment 3 between the estimated TTC of high and low arousal stimuli.

Keywords

arousal / threat / time-to-collision

Cite this article

Download citation ▾
Caiwen Li, Yuming Xuan, Patrick Bruns, Xiaolan Fu. The role of arousal in the estimation of time-to-collision of threatening stimuli. Psych Journal, 2024, 13(3): 376‒386 https://doi.org/10.1002/pchj.762

References

[1]
Battaglini, L., & Ghiani, A. (2021). Motion behind occluder: Amodal perception and visual motion extrapolation. Visual Cognition, 29(8), 475–499.
CrossRef Google scholar
[2]
Batty, M., & Taylor, M. J. (2003). Early processing of the six basic facial emotional expressions. Cognitive Brain Research, 17(3), 613–620.
CrossRef Google scholar
[3]
Bennett, S. J., Baures, R., Hecht, H., & Benguigui, N. (2010). Eye movements influence estimation of time-to-contact in prediction motion. Experimental Brain Research, 206(4), 399–407.
CrossRef Google scholar
[4]
Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8(6), 551–565.
CrossRef Google scholar
[5]
Brendel, E. (2019). Safety strategies in time-to-contact estimation. (Publication No. 13844185). [Doctoral dissertation, Johannes Gutenberg-Universitaet Mainz]. ProQuest Dissertations & Theses Global.
[6]
Brendel, E., DeLucia, P. R., Hecht, H., Stacy, R. L., & Larsen, J. T. (2012). Threatening pictures induce shortened time-to-contact estimates. Attention Perception & Psychophysics, 74(5), 979–987.
CrossRef Google scholar
[7]
Brendel, E., Hecht, H., DeLucia, P. R., & Gamer, M. (2014). Emotional effects on time-to-contact judgments: Arousal, threat, and fear of spiders modulate the effect of pictorial content. Experimental Brain Research, 232(7), 2337–2347.
CrossRef Google scholar
[8]
Cheng, R. K., Tipples, J., Narayanan, N. S., & Meck, W. H. (2016). Clock speed as a window into dopaminergic control of emotion and time perception. Timing and Time Perception, 4(1), 98–121.
CrossRef Google scholar
[9]
Codispoti, M., & de Cesarei, A. (2007). Arousal and attention: Picture size and emotional reactions. Psychophysiology, 44(5), 680–686.
CrossRef Google scholar
[10]
DeLucia, P. R., Brendel, E., Hecht, H., Stacy, R. L., & Larsen, J. T. (2014). Threatening scenes but not threatening faces shorten time-to-contact estimates. Attention Perception & Psychophysics, 76(6), 1698–1708.
CrossRef Google scholar
[11]
DeLucia, P. R., & Liddell, G. W. (1998). Cognitive motion extrapolation and cognitive clocking in prediction motion tasks. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 901–914.
CrossRef Google scholar
[12]
Droit-Volet, S. (2013). Time perception, emotions and mood disorders. Journal of Physiology-Paris, 107(4), 255–264.
CrossRef Google scholar
[13]
Droit-Volet, S., Brunot, S., & Niedenthal, P. M. (2004). Perception of the duration of emotional events. Cognition & Emotion, 18(6), 849–858.
CrossRef Google scholar
[14]
Droit-Volet, S., & Gil, S. (2016). The emotional body and time perception. Cognition & Emotion, 30(4), 687–699.
CrossRef Google scholar
[15]
Droit-Volet, S., Lamotte, M., & Izaute, M. (2015). The conscious awareness of time distortions regulates the effect of emotion on the perception of time. Consciousness and Cognition, 38, 155–164.
CrossRef Google scholar
[16]
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.
CrossRef Google scholar
[17]
Field, D. T., & Wann, J. P. (2005). Perceiving time to collision activates the sensorimotor cortex. Current Biology, 15(5), 453–458.
CrossRef Google scholar
[18]
Fisher, K., Towler, J., & Eimer, M. (2016). Facial identity and facial expression are initially integrated at visual perceptual stages of face processing. Neuropsychologia, 80, 115–125.
CrossRef Google scholar
[19]
Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. Annals of the New York Academy of Sciences, 423, 52–77.
CrossRef Google scholar
[20]
Gil, S., & Droit-Volet, S. (2012). Emotional time distortions: The fundamental role of arousal. Cognition & Emotion, 26(5), 847–862.
CrossRef Google scholar
[21]
Hecht, H., Brendel, E., Wessels, M., & Bernhard, C. (2021). Estimating time-to-contact when vision is impaired. Scientific Reports, 11, 21213.
CrossRef Google scholar
[22]
Hecht, H., & Savelsbergh, G. J. P. (2004). Theories of time-to-contact judgment. In H. Hecht & G. J. P. Savelsbergh (Eds.), Advances in psychology: Vol. 135. Time-to-contact (pp. 1–11). Elsevier Science.
[23]
Itier, R. J., & Taylor, M. J. (2004). N170 or N1? Spatiotemporal differences between object and face processing using ERPs. Cerebral Cortex, 14(2), 132–142.
CrossRef Google scholar
[24]
Kim, N. G. (2015). Perceiving time-to-contact under locally impoverished optical flow. Perceptual and Motor Skills, 120(3), 906–927.
CrossRef Google scholar
[25]
Lake, J. I., LaBar, K. S., & Meck, W. H. (2016). Emotional modulation of interval timing and time perception. Neuroscience & Biobehavioral Reviews, 64, 403–420.
CrossRef Google scholar
[26]
Lee, D. N. (1976). A theory of visual control of braking based on information about time-to-collision. Perception, 5(4), 437–459.
CrossRef Google scholar
[27]
Lehockey, K. A., Winters, A. R., Nicoletta, A. J., Zurlinden, T. E., & Everhart, D. E. (2018). The effects of emotional states and traits on time perception. Brain Informatics, 5(2), 9–22.
CrossRef Google scholar
[28]
Malek, N., Mendoza-Halliday, D., & Martinez-Trujillo, J. (2012). Binocular rivalry of spiral and linear moving random dot patterns in human observers. Journal of Vision, 12(10), 20.
CrossRef Google scholar
[29]
Min, Y., & Kim, S. H. (2022). How do looming and receding emotional faces modulate duration perception? Perceptual and Motor Skills, 130(1), 54–79.
CrossRef Google scholar
[30]
Ogden, R. S., Henderson, J., McGlone, F., & Richter, M. (2019). Time distortion under threat: Sympathetic arousal predicts time distortion only in the context of negative, highly arousing stimuli. PLoS ONE, 14(5), e0216704.
CrossRef Google scholar
[31]
Parker, A., & Alais, D. (2007). A bias for looming stimuli to predominate in binocular rivalry. Vision Research, 47(20), 2661–2674.
CrossRef Google scholar
[32]
Pourtois, G., Grandjean, D., Sander, D., & Vuilleumier, P. (2004). Electrophysiological correlates of rapid spatial orienting towards fearful faces. Cerebral Cortex, 14(6), 619–633.
CrossRef Google scholar
[33]
Regan, D., & Gray, R. (2001). Hitting what one wants to hit and missing what one wants to miss. Vision Research, 41(25–26), 3321–3329.
CrossRef Google scholar
[34]
Rolin, R. A., Fooken, J., Spering, M., & Pai, D. K. (2019). Perception of looming motion in virtual reality egocentric interception tasks. IEEE Transactions on Visualization and Computer Graphics, 25(10), 3042–3048.
CrossRef Google scholar
[35]
Rossion, B. (2014). Understanding face perception by means of human electrophysiology. Trends in Cognitive Sciences, 18(6), 310–318.
CrossRef Google scholar
[36]
Rossion, B., Gauthier, I., Tarr, M. J., Despland, P., Bruyer, R., Linotte, S., & Crommelinck, M. (2000). The N170 occipito-temporal component is delayed and enhanced to inverted faces but not to inverted objects: An electrophysiological account of face-specific processes in the human brain. Neuroreport, 11(1), 69–74.
CrossRef Google scholar
[37]
Sarigiannidis, I., Grillon, C., Ernst, M., Roiser, J. P., & Robinson, O. J. (2020). Anxiety makes time pass quicker while fear has no effect. Cognition, 197(12), 104116.
CrossRef Google scholar
[38]
Scarfe, P., & Glennerster, A. (2015). Using high-fidelity virtual reality to study perception in freely moving observers. Journal of Vision, 15(9), 1–11.
CrossRef Google scholar
[39]
Schiff, W., Caviness, J. A., & Gibson, J. J. (1962). Persistent fear responses in rhesus monkeys to the optical stimulus of “looming”. Science, 136(3520), 982–983.
CrossRef Google scholar
[40]
Schindler, S., Bruchmann, M., Gathmann, B., Moeck, R., & Straube, T. (2021). Effects of low-level visual information and perceptual load on P1 and N170 responses to emotional expressions. Cortex, 136, 14–27.
CrossRef Google scholar
[41]
Schweinberger, S. R., & Soukup, G. R. (1998). Asymmetric relationships among perceptions of facial identity, emotion, and facial speech. Journal of Experimental Psychology: Human Perception and Performance, 24(6), 1748–1765.
CrossRef Google scholar
[42]
Smeets, J. B. J., Brenner, E., Trebuchet, S., & Mestre, D. R. (1996). Is judging time-to-contact based on “tau”? Perception, 25(5), 583–590.
CrossRef Google scholar
[43]
Smith, E., Weinberg, A., Moran, T., & Hajcak, G. (2013). Electrocortical responses to NIMSTIM facial expressions of emotion. International Journal of Psychophysiology, 88(1), 17–25.
CrossRef Google scholar
[44]
Tanskanen, T., Nasanen, R., Ojanpaa, H., & Hari, R. (2007). Face recognition and cortical responses: Effect of stimulus duration. Neuroimage, 35(4), 1636–1644.
CrossRef Google scholar
[45]
Tottenham, N., Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare, T. A., … Nelson, C. (2009). The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research, 168(3), 242–249.
CrossRef Google scholar
[46]
Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the “internal clock”. Psychological Monographs, 77(13), 1–31.
CrossRef Google scholar
[47]
Tresilian, J. R. (1997). Revised tau hypothesis: A consideration of Wann's (1996) analyses. Journal of Experimental Psychology: Human Perception and Performance, 23(4), 1272–1281.
CrossRef Google scholar
[48]
Tresilian, J. R. (1999). Visually timed action: Time-out for “tau”? Trends in Cognitive Sciences, 3(8), 301–310.
CrossRef Google scholar
[49]
Tyll, S., Bonath, B., Schoenfeld, M. A., Heinze, H. J., Ohl, F. W., & Noesselt, T. (2013). Neural basis of multisensory looming signals. Neuroimage, 65, 13–22.
CrossRef Google scholar
[50]
Vagnoni, E., Andreanidou, V., Lourenco, S. F., & Longo, M. R. (2017). Action ability modulates time-to-collision judgments. Experimental Brain Research, 235(9), 2729–2739.
CrossRef Google scholar
[51]
Vagnoni, E., Lingard, L., Munro, S., & Longo, M. R. (2020). Semantic modulation of time-to-collision judgments. Neuropsychologia, 147, 107588.
CrossRef Google scholar
[52]
Vagnoni, E., Lourenco, S. F., & Longo, M. R. (2012). Threat modulates perception of looming visual stimuli. Current Biology, 22(19), R826–R827.
CrossRef Google scholar
[53]
Vagnoni, E., Lourenco, S. F., & Longo, M. R. (2015). Threat modulates neural responses to looming visual stimuli. European Journal of Neuroscience, 42(5), 2190–2202.
CrossRef Google scholar
[54]
von Muhlenen, A., & Lleras, A. (2007). No-onset looming motion guides spatial attention. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1297–1310.
CrossRef Google scholar
[55]
Wagenmakers, E. J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., … Morey, R. D. (2018). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 58–76.
CrossRef Google scholar
[56]
Wann, J. P. (1996). Anticipating arrival: Is the tau margin a specious theory? Journal of Experimental Psychology: Human Perception and Performance, 22(4), 1031–1048.
CrossRef Google scholar
[57]
Yu, Z., Kritikos, A., & Pegna, A. J. (2022). Enhanced early ERP responses to looming angry faces. Biological Psychology, 170, 108308.
CrossRef Google scholar
[58]
Zhao, C. N., & Zeng, Q. (2022). The effect of electrical-stimulation-induced emotion on time perception: A time-reproduction task. International Journal of Environmental Research and Public Health, 19(24), 16984.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Authors. PsyCh Journal published by Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/