The role of arousal in the estimation of time-to-collision of threatening stimuli
Caiwen Li, Yuming Xuan, Patrick Bruns, Xiaolan Fu
The role of arousal in the estimation of time-to-collision of threatening stimuli
The accurate estimation of time-to-collision (TTC) is essential for the survival of organisms. Previous studies have revealed that the emotional properties of approaching stimuli can influence the estimation of TTC, indicating that approaching threatening stimuli are perceived to collide with the observers earlier than they actually do, and earlier than non-threatening stimuli. However, not only are threatening stimuli more negative in valence, but they also have higher arousal compared to non-threatening stimuli. Up to now, the effect of arousal on TTC estimation remains unclear. In addition, inconsistent findings may result from the different experimental settings employed in previous studies. To investigate whether the underestimation of TTC is attributed to threat or high arousal, three experiments with the same settings were conducted. In Experiment 1, the underestimation of TTC estimation of threatening stimuli was replicated when arousal was not controlled, in comparison to non-threatening stimuli. In Experiments 2 and 3, the underestimation effect of threatening stimuli disappeared when compared to positive stimuli with similar arousal. These findings suggest that being threatening alone is not sufficient to explain the underestimation effect, and arousal also plays a significant role in the TTC estimation of approaching stimuli. Further studies are required to validate the effect of arousal on TTC estimation, as no difference was observed in Experiment 3 between the estimated TTC of high and low arousal stimuli.
arousal / threat / time-to-collision
[1] |
Battaglini, L., & Ghiani, A. (2021). Motion behind occluder: Amodal perception and visual motion extrapolation. Visual Cognition, 29(8), 475–499.
CrossRef
Google scholar
|
[2] |
Batty, M., & Taylor, M. J. (2003). Early processing of the six basic facial emotional expressions. Cognitive Brain Research, 17(3), 613–620.
CrossRef
Google scholar
|
[3] |
Bennett, S. J., Baures, R., Hecht, H., & Benguigui, N. (2010). Eye movements influence estimation of time-to-contact in prediction motion. Experimental Brain Research, 206(4), 399–407.
CrossRef
Google scholar
|
[4] |
Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8(6), 551–565.
CrossRef
Google scholar
|
[5] |
Brendel, E. (2019). Safety strategies in time-to-contact estimation. (Publication No. 13844185). [Doctoral dissertation, Johannes Gutenberg-Universitaet Mainz]. ProQuest Dissertations & Theses Global.
|
[6] |
Brendel, E., DeLucia, P. R., Hecht, H., Stacy, R. L., & Larsen, J. T. (2012). Threatening pictures induce shortened time-to-contact estimates. Attention Perception & Psychophysics, 74(5), 979–987.
CrossRef
Google scholar
|
[7] |
Brendel, E., Hecht, H., DeLucia, P. R., & Gamer, M. (2014). Emotional effects on time-to-contact judgments: Arousal, threat, and fear of spiders modulate the effect of pictorial content. Experimental Brain Research, 232(7), 2337–2347.
CrossRef
Google scholar
|
[8] |
Cheng, R. K., Tipples, J., Narayanan, N. S., & Meck, W. H. (2016). Clock speed as a window into dopaminergic control of emotion and time perception. Timing and Time Perception, 4(1), 98–121.
CrossRef
Google scholar
|
[9] |
Codispoti, M., & de Cesarei, A. (2007). Arousal and attention: Picture size and emotional reactions. Psychophysiology, 44(5), 680–686.
CrossRef
Google scholar
|
[10] |
DeLucia, P. R., Brendel, E., Hecht, H., Stacy, R. L., & Larsen, J. T. (2014). Threatening scenes but not threatening faces shorten time-to-contact estimates. Attention Perception & Psychophysics, 76(6), 1698–1708.
CrossRef
Google scholar
|
[11] |
DeLucia, P. R., & Liddell, G. W. (1998). Cognitive motion extrapolation and cognitive clocking in prediction motion tasks. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 901–914.
CrossRef
Google scholar
|
[12] |
Droit-Volet, S. (2013). Time perception, emotions and mood disorders. Journal of Physiology-Paris, 107(4), 255–264.
CrossRef
Google scholar
|
[13] |
Droit-Volet, S., Brunot, S., & Niedenthal, P. M. (2004). Perception of the duration of emotional events. Cognition & Emotion, 18(6), 849–858.
CrossRef
Google scholar
|
[14] |
Droit-Volet, S., & Gil, S. (2016). The emotional body and time perception. Cognition & Emotion, 30(4), 687–699.
CrossRef
Google scholar
|
[15] |
Droit-Volet, S., Lamotte, M., & Izaute, M. (2015). The conscious awareness of time distortions regulates the effect of emotion on the perception of time. Consciousness and Cognition, 38, 155–164.
CrossRef
Google scholar
|
[16] |
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.
CrossRef
Google scholar
|
[17] |
Field, D. T., & Wann, J. P. (2005). Perceiving time to collision activates the sensorimotor cortex. Current Biology, 15(5), 453–458.
CrossRef
Google scholar
|
[18] |
Fisher, K., Towler, J., & Eimer, M. (2016). Facial identity and facial expression are initially integrated at visual perceptual stages of face processing. Neuropsychologia, 80, 115–125.
CrossRef
Google scholar
|
[19] |
Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. Annals of the New York Academy of Sciences, 423, 52–77.
CrossRef
Google scholar
|
[20] |
Gil, S., & Droit-Volet, S. (2012). Emotional time distortions: The fundamental role of arousal. Cognition & Emotion, 26(5), 847–862.
CrossRef
Google scholar
|
[21] |
Hecht, H., Brendel, E., Wessels, M., & Bernhard, C. (2021). Estimating time-to-contact when vision is impaired. Scientific Reports, 11, 21213.
CrossRef
Google scholar
|
[22] |
Hecht, H., & Savelsbergh, G. J. P. (2004). Theories of time-to-contact judgment. In H. Hecht & G. J. P. Savelsbergh (Eds.), Advances in psychology: Vol. 135. Time-to-contact (pp. 1–11). Elsevier Science.
|
[23] |
Itier, R. J., & Taylor, M. J. (2004). N170 or N1? Spatiotemporal differences between object and face processing using ERPs. Cerebral Cortex, 14(2), 132–142.
CrossRef
Google scholar
|
[24] |
Kim, N. G. (2015). Perceiving time-to-contact under locally impoverished optical flow. Perceptual and Motor Skills, 120(3), 906–927.
CrossRef
Google scholar
|
[25] |
Lake, J. I., LaBar, K. S., & Meck, W. H. (2016). Emotional modulation of interval timing and time perception. Neuroscience & Biobehavioral Reviews, 64, 403–420.
CrossRef
Google scholar
|
[26] |
Lee, D. N. (1976). A theory of visual control of braking based on information about time-to-collision. Perception, 5(4), 437–459.
CrossRef
Google scholar
|
[27] |
Lehockey, K. A., Winters, A. R., Nicoletta, A. J., Zurlinden, T. E., & Everhart, D. E. (2018). The effects of emotional states and traits on time perception. Brain Informatics, 5(2), 9–22.
CrossRef
Google scholar
|
[28] |
Malek, N., Mendoza-Halliday, D., & Martinez-Trujillo, J. (2012). Binocular rivalry of spiral and linear moving random dot patterns in human observers. Journal of Vision, 12(10), 20.
CrossRef
Google scholar
|
[29] |
Min, Y., & Kim, S. H. (2022). How do looming and receding emotional faces modulate duration perception? Perceptual and Motor Skills, 130(1), 54–79.
CrossRef
Google scholar
|
[30] |
Ogden, R. S., Henderson, J., McGlone, F., & Richter, M. (2019). Time distortion under threat: Sympathetic arousal predicts time distortion only in the context of negative, highly arousing stimuli. PLoS ONE, 14(5), e0216704.
CrossRef
Google scholar
|
[31] |
Parker, A., & Alais, D. (2007). A bias for looming stimuli to predominate in binocular rivalry. Vision Research, 47(20), 2661–2674.
CrossRef
Google scholar
|
[32] |
Pourtois, G., Grandjean, D., Sander, D., & Vuilleumier, P. (2004). Electrophysiological correlates of rapid spatial orienting towards fearful faces. Cerebral Cortex, 14(6), 619–633.
CrossRef
Google scholar
|
[33] |
Regan, D., & Gray, R. (2001). Hitting what one wants to hit and missing what one wants to miss. Vision Research, 41(25–26), 3321–3329.
CrossRef
Google scholar
|
[34] |
Rolin, R. A., Fooken, J., Spering, M., & Pai, D. K. (2019). Perception of looming motion in virtual reality egocentric interception tasks. IEEE Transactions on Visualization and Computer Graphics, 25(10), 3042–3048.
CrossRef
Google scholar
|
[35] |
Rossion, B. (2014). Understanding face perception by means of human electrophysiology. Trends in Cognitive Sciences, 18(6), 310–318.
CrossRef
Google scholar
|
[36] |
Rossion, B., Gauthier, I., Tarr, M. J., Despland, P., Bruyer, R., Linotte, S., & Crommelinck, M. (2000). The N170 occipito-temporal component is delayed and enhanced to inverted faces but not to inverted objects: An electrophysiological account of face-specific processes in the human brain. Neuroreport, 11(1), 69–74.
CrossRef
Google scholar
|
[37] |
Sarigiannidis, I., Grillon, C., Ernst, M., Roiser, J. P., & Robinson, O. J. (2020). Anxiety makes time pass quicker while fear has no effect. Cognition, 197(12), 104116.
CrossRef
Google scholar
|
[38] |
Scarfe, P., & Glennerster, A. (2015). Using high-fidelity virtual reality to study perception in freely moving observers. Journal of Vision, 15(9), 1–11.
CrossRef
Google scholar
|
[39] |
Schiff, W., Caviness, J. A., & Gibson, J. J. (1962). Persistent fear responses in rhesus monkeys to the optical stimulus of “looming”. Science, 136(3520), 982–983.
CrossRef
Google scholar
|
[40] |
Schindler, S., Bruchmann, M., Gathmann, B., Moeck, R., & Straube, T. (2021). Effects of low-level visual information and perceptual load on P1 and N170 responses to emotional expressions. Cortex, 136, 14–27.
CrossRef
Google scholar
|
[41] |
Schweinberger, S. R., & Soukup, G. R. (1998). Asymmetric relationships among perceptions of facial identity, emotion, and facial speech. Journal of Experimental Psychology: Human Perception and Performance, 24(6), 1748–1765.
CrossRef
Google scholar
|
[42] |
Smeets, J. B. J., Brenner, E., Trebuchet, S., & Mestre, D. R. (1996). Is judging time-to-contact based on “tau”? Perception, 25(5), 583–590.
CrossRef
Google scholar
|
[43] |
Smith, E., Weinberg, A., Moran, T., & Hajcak, G. (2013). Electrocortical responses to NIMSTIM facial expressions of emotion. International Journal of Psychophysiology, 88(1), 17–25.
CrossRef
Google scholar
|
[44] |
Tanskanen, T., Nasanen, R., Ojanpaa, H., & Hari, R. (2007). Face recognition and cortical responses: Effect of stimulus duration. Neuroimage, 35(4), 1636–1644.
CrossRef
Google scholar
|
[45] |
Tottenham, N., Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare, T. A., … Nelson, C. (2009). The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research, 168(3), 242–249.
CrossRef
Google scholar
|
[46] |
Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the “internal clock”. Psychological Monographs, 77(13), 1–31.
CrossRef
Google scholar
|
[47] |
Tresilian, J. R. (1997). Revised tau hypothesis: A consideration of Wann's (1996) analyses. Journal of Experimental Psychology: Human Perception and Performance, 23(4), 1272–1281.
CrossRef
Google scholar
|
[48] |
Tresilian, J. R. (1999). Visually timed action: Time-out for “tau”? Trends in Cognitive Sciences, 3(8), 301–310.
CrossRef
Google scholar
|
[49] |
Tyll, S., Bonath, B., Schoenfeld, M. A., Heinze, H. J., Ohl, F. W., & Noesselt, T. (2013). Neural basis of multisensory looming signals. Neuroimage, 65, 13–22.
CrossRef
Google scholar
|
[50] |
Vagnoni, E., Andreanidou, V., Lourenco, S. F., & Longo, M. R. (2017). Action ability modulates time-to-collision judgments. Experimental Brain Research, 235(9), 2729–2739.
CrossRef
Google scholar
|
[51] |
Vagnoni, E., Lingard, L., Munro, S., & Longo, M. R. (2020). Semantic modulation of time-to-collision judgments. Neuropsychologia, 147, 107588.
CrossRef
Google scholar
|
[52] |
Vagnoni, E., Lourenco, S. F., & Longo, M. R. (2012). Threat modulates perception of looming visual stimuli. Current Biology, 22(19), R826–R827.
CrossRef
Google scholar
|
[53] |
Vagnoni, E., Lourenco, S. F., & Longo, M. R. (2015). Threat modulates neural responses to looming visual stimuli. European Journal of Neuroscience, 42(5), 2190–2202.
CrossRef
Google scholar
|
[54] |
von Muhlenen, A., & Lleras, A. (2007). No-onset looming motion guides spatial attention. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1297–1310.
CrossRef
Google scholar
|
[55] |
Wagenmakers, E. J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., … Morey, R. D. (2018). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 58–76.
CrossRef
Google scholar
|
[56] |
Wann, J. P. (1996). Anticipating arrival: Is the tau margin a specious theory? Journal of Experimental Psychology: Human Perception and Performance, 22(4), 1031–1048.
CrossRef
Google scholar
|
[57] |
Yu, Z., Kritikos, A., & Pegna, A. J. (2022). Enhanced early ERP responses to looming angry faces. Biological Psychology, 170, 108308.
CrossRef
Google scholar
|
[58] |
Zhao, C. N., & Zeng, Q. (2022). The effect of electrical-stimulation-induced emotion on time perception: A time-reproduction task. International Journal of Environmental Research and Public Health, 19(24), 16984.
CrossRef
Google scholar
|
/
〈 | 〉 |