Attention biases the process of risky decision-making: Evidence from eye-tracking

Mengchen Hu, Ruosong Chang, Xue Sui, Min Gao

PDF
Psych Journal ›› 2024, Vol. 13 ›› Issue (2) : 157-165. DOI: 10.1002/pchj.724
REVIEW ARTICLE

Attention biases the process of risky decision-making: Evidence from eye-tracking

Author information +
History +

Abstract

Attention determines what kind of option information is processed during risky choices owing to the limitation of visual attention. This paper reviews research on the relationship between higher-complexity risky decision-making and attention as illustrated by eye-tracking to explain the process of risky decision-making by the effect of attention. We demonstrate this process from three stages: the pre-phase guidance of options on attention, the process of attention being biased, and the impact of attention on final risk preference. We conclude that exogenous information can capture attention directly to salient options, thereby altering evidence accumulation. In particular, for multi-attribute risky decision-making, attentional advantages increase the weight of specific attributes, thus biasing risk preference in different directions. We highlight the significance of understanding how people use available information to weigh risks from an information-processing perspective via process data.

Keywords

attention / evidence accumulation / eye-tracking / risk preference / risky decision-making

Cite this article

Download citation ▾
Mengchen Hu, Ruosong Chang, Xue Sui, Min Gao. Attention biases the process of risky decision-making: Evidence from eye-tracking. Psych Journal, 2024, 13(2): 157‒165 https://doi.org/10.1002/pchj.724

References

[1]
Alós-Ferrer, C., Jaudas, A., & Ritschel, A. (2021). Attentional shifts and preference reversals: An eye-tracking study. Judgment and Decision Making, 16(1), 57–93.
CrossRef Google scholar
[2]
Alós-Ferrer, C., & Ritschel, A. (2022). Attention and salience in preference reversals. Experimental Economics, 25(3), 1024–1051.
CrossRef Google scholar
[3]
Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Learned value magnifies salience-based attentional capture. PLoS One, 6(11), e27926.
CrossRef Google scholar
[4]
Ashby, N. J. S., Jekel, M., Dickert, S., & Glockner, A. (2016). Finding the right fit: A comparison of process assumptions underlying popular drift-diffusion models. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(12), 1982–1993.
CrossRef Google scholar
[5]
Ashby, N. J. S., Johnson, J. G., Krajbich, I., & Wedel, M. (2016). Applications and innovations of eye-movement research in judgment and decision making. Journal of Behavioral Decision Making, 29(2–3), 96–102.
CrossRef Google scholar
[6]
Ashby, N. J. S., Yechiam, E., & Ben-Eliezer, D. (2018). The consistency of visual attention to losses and loss sensitivity across valuation and choice. Journal of Experimental Psychology: General, 147(12), 1791–1809.
CrossRef Google scholar
[7]
Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443.
CrossRef Google scholar
[8]
Ballco, P., De-Magistris, T., & Caputo, V. (2019). Consumer preferences for nutritional claims: An exploration of attention and choice based on an eye-tracking choice experiment. Food Research International, 116, 37–48.
CrossRef Google scholar
[9]
Barbosa, A. A. L., de Moura, J. A., & de Medeiros, D. D. (2021). Positioning of design elements on the packaging of frozen convenience food and consumers' levels of attention: An experiment using pizza boxes. Food Quality and Preference, 87, 104044.
CrossRef Google scholar
[10]
Barrafrem, K., & Hausfeld, J. (2020). Tracing risky decisions for oneself and others: The role of intuition and deliberation. Journal of Economic Psychology, 77, 102188.
CrossRef Google scholar
[11]
Bourgeois, A., Badier, E., Baron, N., Carruzzo, F., & Vuilleumier, P. (2018). Influence of reward learning on visual attention and eye movements in a naturalistic environment: A virtual reality study. PLoS One, 13(12), e0207990.
CrossRef Google scholar
[12]
Bourgeois, A., Neveu, R., Bayle, D. J., & Vuilleumier, P. (2017). How does reward compete with goal-directed and stimulus-driven shifts of attention? Cognition and Emotion, 31(1), 109–118.
CrossRef Google scholar
[13]
Brandstatter, E., & Korner, C. (2014). Attention in risky choice. Acta Psychologica, 152, 166–176.
CrossRef Google scholar
[14]
Cherkasova, M. V., Clark, L., Barton, J. J. S., Schulzer, M., Shafiee, M., Kingstone, A., Stoessl, A. J., & Winstanley, C. A. (2018). Win-concurrent sensory cues can promote riskier choice. Journal of Neuroscience, 38(48), 10362–10370.
CrossRef Google scholar
[15]
Clay, S. N., Clithero, J. A., Harris, A. M., & Reed, C. L. (2017). Loss aversion reflects information accumulation, not bias: A drift-diffusion model study. Frontiers in Psychology, 8, 1708.
CrossRef Google scholar
[16]
Cui, L., Ye, M., Sun, L., Zhang, S., & He, G. (2022). Common and distinct neural correlates of intertemporal and risky decision-making: Meta-analytical evidence for the dual-system theory. Neuroscience & Biobehavioral Reviews, 141, 104851.
CrossRef Google scholar
[17]
Dambacher, M., Haffke, P., Groß, D., & Hübner, R. (2016). Graphs versus numbers: How information format affects risk aversion in gambling. Judgment and Decision Making, 11(3), 223–242. http://nbn-resolving.de/urn:nbn:de:bsz:352-0-342608
[18]
De Martino, B., Kumaran, D., Seymour, B., & Dolan, R. J. (2006). Frames, biases, and rational decision-making in the human brain. Science, 313(5787), 684–687.
CrossRef Google scholar
[19]
De Petrillo, F., Paoletti, M., Bellagamba, F., Manzi, G., Paglieri, F., & Addessi, E. (2020). Contextual factors modulate risk preferences in adult humans. Behavioural Processes, 176, 104137.
CrossRef Google scholar
[20]
Duerrschmid, K., & Danner, L. (2018). Eye tracking in consumer research. Methods in Consumer Research, 2, 279–318.
CrossRef Google scholar
[21]
Dutilh, G., & Rieskamp, J. (2016). Comparing perceptual and preferential decision making. Psychonomic Bulletin & Review, 23, 723–737.
CrossRef Google scholar
[22]
Evans, J. S. B. (2006). Dual system theories of cognition: Some issues. Proceedings of the Annual Meeting of the Cognitive Science Society, 28(28), 202–207. https://escholarship.org/uc/item/76d4d629
[23]
Evans, J. S. B., & Stanovich, K. E. (2013). Dual-process theories of higher cognition: Advancing the debate. Perspectives on Psychological Science, 8(3), 223–241.
CrossRef Google scholar
[24]
Fiedler, S., & Glöckner, A. (2012). The dynamics of decision making in risky choice: An eye-tracking analysis. Frontiers in Psychology, 3, 335.
CrossRef Google scholar
[25]
Fiedler, S., & Hillenbrand, A. (2020). Gain-loss framing in interdependent choice. Games and Economic Behavior, 121, 232–251.
CrossRef Google scholar
[26]
Fisher, G. (2017). An attentional drift diffusion model over binary-attribute choice. Cognition, 168, 34–45.
CrossRef Google scholar
[27]
Fisher, G. (2021). A multiattribute attentional drift diffusion model. Organizational Behavior and Human Decision Processes, 165, 167–182.
CrossRef Google scholar
[28]
Fridman, I., Ubel, P. A., & Higgins, E. T. (2018). Eye-tracking evidence shows that non-fit messaging impacts attention, attitudes and choice. PLoS One, 13(10), e0205993.
CrossRef Google scholar
[29]
Ghaffari, M., & Fiedler, S. (2018). The power of attention: Using eye gaze to predict other-regarding and moral choices. Psychological Science, 29(11), 1878–1889.
CrossRef Google scholar
[30]
Glickman, M., Sharoni, O., Levy, D. J., Niebur, E., Stuphorn, V., & Usher, M. (2019). The formation of preference in risky choice. PLoS Computational Biology, 15(8), e1007201.
CrossRef Google scholar
[31]
Gluth, S., Kern, N., Kortmann, M., & Vitali, C. L. (2020). Value-based attention but not divisive normalization influences decisions with multiple alternatives. Nature Human Behaviour, 4(6), 634–645.
CrossRef Google scholar
[32]
Grayot, J. D. (2019). Dual process theories in behavioral economics and neuroeconomics: A critical review. Review of Philosophy and Psychology, 11(1), 105–136.
CrossRef Google scholar
[33]
Grether, D. M., & Plott, C. R. (1979). Economic theory of choice and the preference reversal phenomenon. The American Economic Review, 69(4), 623–638. https://www.jstor.org/stable/1808708
[34]
Harrison, G. W., & Swarthout, J. T. (2019). Eye-tracking and economic theories of choice under risk. Journal of the Economic Science Association, 5(1), 26–37.
CrossRef Google scholar
[35]
He, L., & Bhatia, S. (2023). Complex economic decisions from simple neurocognitive processes: The role of interactive attention. Proceedings of the Royal Society B, 290(1992), 20221593.
CrossRef Google scholar
[36]
Hunt, A. R., Reuther, J., Hilchey, M. D., & Klein, R. M. (2019). The relationship between spatial attention and eye movements. Current Topics in Behavioral Neurosciences, 41, 255–278.
CrossRef Google scholar
[37]
Jonikaitis, D., Klapetek, A., & Deubel, H. (2017). Spatial attention during saccade decisions. Journal of Neurophysiology, 118(1), 149–160.
CrossRef Google scholar
[38]
Kahneman, D. (1979). Prospect theory: An analysis of decisions under risk. Econometrica, 47, 263–292.
CrossRef Google scholar
[39]
Kahneman, D., & Frederick, S. (2007). Frames and brains: Elicitation and control of response tendencies. Trends in Cognitive Sciences, 11(2), 45–46.
CrossRef Google scholar
[40]
Keren, G., & Schul, Y. (2009). Two is not always better than one: A critical evaluation of two-system theories. Perspectives on Psychological Science, 4(6), 533–550.
CrossRef Google scholar
[41]
Kim, B. E., Seligman, D., & Kable, J. W. (2012). Preference reversals in decision making under risk are accompanied by changes in attention to different attributes. Frontiers in Neuroscience, 6, 109.
CrossRef Google scholar
[42]
Krajbich, I. (2019). Accounting for attention in sequential sampling models of decision making. Current Opinion in Psychology, 29, 6–11.
CrossRef Google scholar
[43]
Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and comparison of value in simple choice. Nature Neuroscience, 13(10), 1292–1298.
CrossRef Google scholar
[44]
Krajbich, I., Bartling, B., Hare, T., & Fehr, E. (2015). Rethinking fast and slow based on a critique of reaction-time reverse inference. Nature Communications, 6, 7455.
CrossRef Google scholar
[45]
Krajbich, I., & Rangel, A. (2011). Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions. Proceedings of the National Academy of Sciences of the United States of America, 108(33), 13852–13857.
CrossRef Google scholar
[46]
Kwak, Y., & Huettel, S. (2018). The order of information processing alters economic gain-loss framing effects. Acta Psychologica, 182, 46–54.
CrossRef Google scholar
[47]
Lee, D. G., D'Alessandro, M., Iodice, P., Calluso, C., Rustichini, A., & Pezzulo, G. (2023). Risky decisions are influenced by individual attributes as a function of risk preference. Cognitive Psychology, 147, 101614.
CrossRef Google scholar
[48]
Lichtenstein, S., & Slovic, P. (1971). Reversals of preference between bids and choices in gambling decisions. Journal of Experimental Psychology, 89(1), 46–55.
CrossRef Google scholar
[49]
Liu, H. Z., Wei, Z. H., & Li, P. (2021). Influence of the manner of information presentation on risky choice. Frontiers in Psychology, 12, 650206.
CrossRef Google scholar
[50]
Liu, H.-Z., Zhou, Y.-B., Wei, Z.-H., & Jiang, C.-M. (2020). The power of last fixation: Biasing simple choices by gaze-contingent manipulation. Acta Psychologica, 208, 103106.
CrossRef Google scholar
[51]
Ludwig, J., Jaudas, A., & Achtziger, A. (2020). The role of motivation and volition in economic decisions: Evidence from eye movements and pupillometry. Journal of Behavioral Decision Making, 33(2), 180–195.
CrossRef Google scholar
[52]
Mehlhose, C., Schmitt, D., & Risius, A. (2021). PACE labels on healthy and unhealthy snack products in a laboratory shopping setting: Perception, visual attention, and product choice. Foods, 10(4), 904.
CrossRef Google scholar
[53]
Metcalfe, J., & Mischel, W. (1999). A hot/cool-system analysis of delay of gratification: Dynamics of willpower. Psychological Review, 106(1), 3–19.
CrossRef Google scholar
[54]
Mittone, L., & Papi, M. (2020). Inducing alternative-based and characteristic-based search procedures in risky choice. Judgment and Decision Making, 15(3), 371–380. http://journal.sjdm.org/19/190308/jdm190308.html
[55]
Molter, F., Thomas, A. W., Huettel, S. A., Heekeren, H. R., & Mohr, P. N. C. (2022). Gaze-dependent evidence accumulation predicts multi-alternative risky choice behaviour. PLoS Computational Biology, 18(7), e1010283.
CrossRef Google scholar
[56]
Mormann, M., & Russo, J. E. (2021). Does attention increase the value of choice alternatives? Trends in Cognitive Sciences, 25(4), 305–315.
CrossRef Google scholar
[57]
Motoki, K., Saito, T., & Onuma, T. (2021). Eye-tracking research on sensory and consumer science: A review, pitfalls and future directions. Food Research International, 145, 110389.
CrossRef Google scholar
[58]
Mueller, S. Q., Ring, P., & Fischer, M. (2022). Excited and aroused: The predictive importance of simple choice process metrics. Journal of Neuroscience, Psychology, and Economics, 15(1), 31–53.
CrossRef Google scholar
[59]
Mukherjee, K. (2010). A dual system model of preferences under risk. Psychological Review, 117(1), 243–255.
CrossRef Google scholar
[60]
Orquin, J. L., Lahm, E. S., & Stojic, H. (2021). The visual environment and attention in decision making. Psychological Bulletin, 147(6), 597–617.
CrossRef Google scholar
[61]
Orquin, J. L., Perkovic, S., & Grunert, K. G. (2018). Visual biases in decision making. Applied Economic Perspectives and Policy, 40(4), 523–537.
CrossRef Google scholar
[62]
Pachur, T., Schulte-Mecklenbeck, M., Murphy, R. O., & Hertwig, R. (2018). Prospect theory reflects selective allocation of attention. Journal of Experimental Psychology: General, 147(2), 147–169.
CrossRef Google scholar
[63]
Peng, M., Browne, H., Cahayadi, J., & Cakmak, Y. (2021). Predicting food choices based on eye-tracking data: Comparisons between real-life and virtual tasks. Appetite, 166, 105477.
CrossRef Google scholar
[64]
Perkovic, S., Schoemann, M., Lagerkvist, C.-J., & Orquin, J. L. (2023). Covert attention leads to fast and accurate decision-making. Journal of Experimental Psychology: Applied, 29(1), 78–94.
CrossRef Google scholar
[65]
Peschel, A. O., Orquin, J. L., & Mueller Loose, S. (2019). Increasing consumers' attention capture and food choice through bottom-up effects. Appetite, 132, 1–7.
CrossRef Google scholar
[66]
Pleskac, T. J., Yu, S., Hopwood, C., & Liu, T. (2019). Mechanisms of deliberation during preferential choice: Perspectives from computational modeling and individual differences. Decision, 6(1), 77–107.
CrossRef Google scholar
[67]
Purcell, J. R., Jahn, A., Fine, J. M., & Brown, J. W. (2021). Neural correlates of visual attention during risky decision evidence integration. NeuroImage, 234, 117979.
CrossRef Google scholar
[68]
Rahal, R.-M., & Fiedler, S. (2019). Understanding cognitive and affective mechanisms in social psychology through eye-tracking. Journal of Experimental Social Psychology, 85, 103842.
CrossRef Google scholar
[69]
Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372–422.
CrossRef Google scholar
[70]
Roberts, I. D., Teoh, Y. Y., & Hutcherson, C. A. (2021). Time to pay attention? Information search explains amplified framing effects under time pressure. Psychological Science, 33(1), 90–104.
CrossRef Google scholar
[71]
Robertson, D. A., & Lunn, P. D. (2020). The effect of spatial location of calorie information on choice, consumption and eye movements. Appetite, 144, 104446.
CrossRef Google scholar
[72]
Schoemann, M., Schulte-Mecklenbeck, M., Renkewitz, F., & Scherbaum, S. (2019). Forward inference in risky choice: Mapping gaze and decision processes. Journal of Behavioral Decision Making, 32(5), 521–535.
CrossRef Google scholar
[73]
Sepulveda, P., Usher, M., Davies, N., Benson, A. A., Ortoleva, P., & De Martino, B. (2020). Visual attention modulates the integration of goal-relevant evidence and not value. eLife, 9, e60705.
CrossRef Google scholar
[74]
Simonovic, B., Stupple, E. J. N., Gale, M., & Sheffield, D. (2018). Performance under stress: An eye-tracking investigation of the Iowa gambling task (IGT). Frontiers Behavioral Neuroscience, 12, 217.
CrossRef Google scholar
[75]
Smith, S. M., & Krajbich, I. (2019). Gaze amplifies value in decision making. Psychological Science, 30(1), 116–128.
CrossRef Google scholar
[76]
Spitmaan, M., Chu, E., & Soltani, A. (2019). Salience-driven value construction for adaptive choice under risk. Journal of Neuroscience, 39(26), 5195–5209.
CrossRef Google scholar
[77]
St Evans, J. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59(1), 255–278.
CrossRef Google scholar
[78]
Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate? Behavioral and Brain Sciences, 23(5), 645–665.
CrossRef Google scholar
[79]
Stewart, N., Hermens, F., & Matthews, W. J. (2016). Eye movements in risky choice. Journal of Behavioral Decision Making, 29(2–3), 116–136.
CrossRef Google scholar
[80]
Stillman, P. E., Krajbich, I., & Ferguson, M. J. (2020). Using dynamic monitoring of choices to predict and understand risk preferences. Proceedings of the National Academy of Sciences of the United States of America, 117(50), 31738–31747.
CrossRef Google scholar
[81]
Su, Y., Rao, L. L., Sun, H. Y., Du, X. L., Li, X., & Li, S. (2013). Is making a risky choice based on a weighting and adding process? An eye-tracking investigation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(6), 1765–1780.
CrossRef Google scholar
[82]
Sui, X. Y., Liu, H. Z., & Rao, L. L. (2020). The timing of gaze-contingent decision prompts influences risky choice. Cognition, 195, 104077.
CrossRef Google scholar
[83]
Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77–99.
CrossRef Google scholar
[84]
Thomas, A. W., Molter, F., & Krajbich, I. (2021). Uncovering the computational mechanisms underlying many-alternative choice. eLife, 10, e57012.
CrossRef Google scholar
[85]
Toma, F. M., Cepoi, C. O., Kubinschi, M. N., & Miyakoshi, M. (2023). Gazing through the bubble: An experimental investigation into financial risk-taking using eye-tracking. Financial Innovation, 9(1), 1–27.
CrossRef Google scholar
[86]
Tortora, G., Machin, L., & Ares, G. (2019). Influence of nutritional warnings and other label features on consumers' choice: Results from an eye-tracking study. Food Research International, 119, 605–611.
CrossRef Google scholar
[87]
Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297–323.
CrossRef Google scholar
[88]
van der Laan, L. N., Papies, E. K., Hooge, I. T., & Smeets, P. A. (2017). Goal-directed visual attention drives health goal priming: An eye-tracking experiment. Health Psychology, 36(1), 82–90.
CrossRef Google scholar
[89]
Vanunu, Y., Hotaling, J. M., Pelley, M. E. L., & Newel, B. R. (2021). How top-down and bottom-up attention modulate risky choice. Proceedings of the National Academy of Sciences of the United States of America, 118(39), e2025646118.
CrossRef Google scholar
[90]
Vriens, M., Vidden, C., & Schomaker, J. (2020). What I see is what I want: Top-down attention biasing choice behavior. Journal of Business Research, 111, 262–269.
CrossRef Google scholar
[91]
Wang, Y., & Liu, Y. (2021). Can longer gaze duration determine risky investment decisions? An interactive perspective. Journal of Eye Movement Research, 14(4).
CrossRef Google scholar
[92]
Wedel, M., Pieters, R., & van der Lans, R. (2022). Modeling eye movements during decision making: A review. Psychometrika, 1-33, 697–729.
CrossRef Google scholar
[93]
Yang, X., & Krajbich, I. (2023). A dynamic computational model of gaze and choice in multi-attribute decisions. Psychological Review, 130(1), 52–70.
CrossRef Google scholar
[94]
Yoo, S., Jeong, S., Kim, S., & Jang, Y. (2021). Saliency-based gaze visualization for eye movement analysis. Sensors (Basel), 21(15), 5178.
CrossRef Google scholar
[95]
Yoon, T., Jaleel, A., Ahmed, A. A., & Shadmehr, R. (2020). Saccade vigor and the subjective economic value of visual stimuli. Journal of Neurophysiology, 123(6), 2161–2172.
CrossRef Google scholar
[96]
Zeisberger, S. (2022). Do people care about loss probabilities? Journal of Risk and Uncertainty, 65(2), 185–213.
CrossRef Google scholar
[97]
Zhou, Y.-B., Li, Q., & Liu, H.-Z. (2021). Visual attention and time preference reversals. Judgment and Decision Making, 16(4), 1010–1038. http://journal.sjdm.org/20/201011/jdm201011.html.
[98]
Zilker, V. (2022). Stronger attentional biases can be linked to higher reward rate in preferential choice. Cognition, 225, 105095.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. PsyCh Journal published by Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/