Beta oscillation is an indicator for two patterns of sensorimotor synchronization
Yuelin Liu, Chen Zhao, Tillman Sander-Thömmes, Taoxi Yang, Yan Bao
Beta oscillation is an indicator for two patterns of sensorimotor synchronization
Previous study indicates that there are two distinct behavioral patterns in the sensory-motor synchronization task with short stimulus onset asynchrony (SOA; 2–3 s) or long SOA (beyond 4 s). However, the underlying neural indicators and mechanisms have not been elucidated. The present study applied magnetoencephalography (MEG) technology to examine the functional role of several oscillations (beta, gamma, and mu) in sensorimotor synchronization with different SOAs to identify a reliable neural indicator. During MEG recording, participants underwent a listening task without motor response, a sound-motor synchronization task, and a motor-only continuation task. These tasks were used to explore whether and how the activity of oscillations changes across different behavioral patterns with different tempos. Results showed that during both the listening and the synchronization task, the beta oscillation changes with the tempo. Moreover, the event-related synchronization of beta oscillations was significantly correlated with motor timing during synchronization. In contrast, mu activity only changes with the tempo in the synchronization task, while the gamma activity remains unchanged. In summary, the current study indicates that beta oscillation could be an indicator of behavioral patterns between fast tempo and slow tempo in sensorimotor synchronization. Also, it is likely to be the potential mechanism of maintaining rhythmic continuous movements with short SOA, which is embedded within the 3 s time window.
beta oscillation / motor cortex / sensorimotor synchronization / time perception
[1] |
Arnal, L. H., & Giraud, A. L. (2012). Cortical oscillations and sensory predictions. Trends in Cognitive Sciences, 16(7), 390–398.
CrossRef
Google scholar
|
[2] |
Arnal, L. H., Wyart, V., & Giraud, A. L. (2011). Transitions in neural oscillations reflect prediction errors generated in audiovisual speech. Nature Neuroscience, 14(6), 797–801.
CrossRef
Google scholar
|
[3] |
Bååth, R., & Madison, G. (2012). The subjective difficulty of tapping to a slow beat. In 12th International Conference on Music Perception and Cognition. Thessaloniki, Greece.
|
[4] |
Bao, Y., Pöppel, E., Wang, L., Lin, X., Yang, T., Avram, M., Blautzik, J., Paolini, M., Silveira, S., Vedder, A., Zaytseva, Y., & Zhou, B. (2015). Synchronization as a biological, psychological and social mechanism to create common time: A theoretical frame and a single case study. PsyCh Journal, 4(4), 243–254.
CrossRef
Google scholar
|
[5] |
Buzsaki, G. (2006). Rhythms of the brain. Oxford University Press.
|
[6] |
Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18(12), 2844–2854.
CrossRef
Google scholar
|
[7] |
Chen, Y., Repp, B. H., & Patel, A. D. (2002). Spectral decomposition of variability in synchronization and continuation tapping: Comparisons between auditory and visual pacing and feedback conditions. Human Movement Science, 21(4), 515–532.
CrossRef
Google scholar
|
[8] |
Fujioka, T., Trainor, L. J., Large, E. W., & Ross, B. (2009). Beta and gamma rhythms in human auditory cortex during musical beat processing. Annals of the New York Academy of Sciences, 1169, 89–92.
CrossRef
Google scholar
|
[9] |
Fujioka, T., Trainor, L. J., Large, E. W., & Ross, B. (2012). Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. Journal of Neuroscience, 32(5), 1791–1802.
CrossRef
Google scholar
|
[10] |
Grahn, J. A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19(5), 893–906.
CrossRef
Google scholar
|
[11] |
Gross, J., Baillet, S., Barnes, G. R., Henson, R. N., Hillebrand, A., Jensen, O., Jerbi, K., Litvak, V., Maess, B., Oostenveld, R., Parkkonen, L., Taylor, J. R., van Wassenhove, V., Wibral, M., & Schoffelen, J. M. (2013). Good practice for conducting and reporting MEG research. NeuroImage, 65, 349–363.
CrossRef
Google scholar
|
[12] |
Joliot, M., Crivello, F., Badier, J. M., Diallo, B., Tzourio, N., & Mazoyer, B. (1998). Anatomical congruence of metabolic and electromagnetic activation signals during a self-paced motor task: A combined PET-MEG study. NeuroImage, 7(4, Pt 1), 337–351.
CrossRef
Google scholar
|
[13] |
Joundi, R. A., Jenkinson, N., Brittain, J. S., Aziz, T. Z., & Brown, P. (2012). Driving oscillatory activity in the human cortex enhances motor performance. Current Biology, 22(5), 403–407.
CrossRef
Google scholar
|
[14] |
Kononowicz, T. W., Sander, T., & Van Rijn, H. (2015). Neuroelectromagnetic signatures of the reproduction of supra-second durations. Neuropsychologia, 75, 201–213.
CrossRef
Google scholar
|
[15] |
Kononowicz, T. W., & van Rijn, H. (2015). Single trial beta oscillations index time estimation. Neuropsychologia, 75, 381–389.
CrossRef
Google scholar
|
[16] |
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. (2017). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software, 82, 1–26.
|
[17] |
Mates, J., Müller, U., Radil, T., & Pöppel, E. (1994). Temporal integration in sensorimotor synchronization. Journal of Cognitive Neuroscience, 6(4), 332–340.
|
[18] |
Miyake, Y., Onishi, Y., & Pöppel, E. (2007). Two types of anticipatory-timing mechanisensorimotor synchronization in synchronization tapping. Object Recognition Attention and Action, 64(3), 415–426.
CrossRef
Google scholar
|
[19] |
Muthukumaraswamy, S. D. (2010). Functional properties of human primary motor cortex gamma oscillations. Journal of Neurophysiology, 104(5), 2873–2885.
CrossRef
Google scholar
|
[20] |
Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 156869.
CrossRef
Google scholar
|
[21] |
Park, S. W., Marino, H., Charles, S. K., Sternad, D., & Hogan, N. (2017). Moving slowly is hard for humans: Limitations of dynamic primitives. Journal of Neurophysiology, 118(1), 69–83.
CrossRef
Google scholar
|
[22] |
Patel, A. D., & Iversen, J. R. (2014). The evolutionary neuroscience of musical beat perception: The action simulation for auditory prediction (ASAP) hypothesis. Frontiers in Systems Neuroscience, 8, 1–14.
CrossRef
Google scholar
|
[23] |
Pfurtscheller, G., & da Silva, F. H. L. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110(11), 1842–1857.
|
[24] |
Pfurtscheller, G., Graimann, B., Huggins, J. E., Levine, S. P., & Schuh, L. A. (2003). Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clinical Neurophysiology, 114(7), 1226–1236.
CrossRef
Google scholar
|
[25] |
Pollok, B., Gross, J., & Schnitzler, A. (2006). How the brain controls repetitive finger movements. Journal of Physiology, Paris, 99, 8–13.
CrossRef
Google scholar
|
[26] |
Pöppel, E. (1997). A hierarchical model of temporal perception. Trends in Cognitive Sciences, 1, 56–61.
CrossRef
Google scholar
|
[27] |
Radil, T., Mates, J., Ilmberger, J., & Pöppel, E. (1990). Stimulus anticipation in following rhythmic acoustical patterns by tapping. Experientia, 46, 762–763.
|
[28] |
Repp, B. H., & Su, Y. H. (2013). Sensorimotor synchronization: A review of recent research (2006–2012). Psychonomic Bulletin and Review, 20(3), 403–452.
CrossRef
Google scholar
|
[29] |
Saleh, M., Reimer, J., Penn, R., Ojakangas, C. L., & Hatsopoulos, N. G. (2010). Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues. Neuron, 65(4), 461–471.
CrossRef
Google scholar
|
[30] |
Seeber, M., Scherer, R., & Müller-Putz, G. R. (2016). EEG oscillations are modulated in different behavior-related networks during rhythmic finger movements. Journal of Neuroscience, 36(46), 11671–11681.
CrossRef
Google scholar
|
[31] |
Tan, H., Jenkinson, N., & Brown, P. (2014). Dynamic neural correlates of motor error monitoring and adaptation during trial-to-trial learning. Journal of Neuroscience, 34(16), 5678–5688.
CrossRef
Google scholar
|
[32] |
Todorovic, A., van Ede, F., Maris, E., & de Lange, F. P. (2011). Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: An MEG study. Journal of Neuroscience, 31(25), 9118–9123.
CrossRef
Google scholar
|
[33] |
Toma, K., Mima, T., Matsuoka, T., Gerloff, C., Ohnishi, T., Koshy, B., Andres, F., & Hallett, M. (2002). Movement rate effect on activation and functional coupling of motor cortical areas. Journal of Neurophysiology, 88(6), 3377–3385.
CrossRef
Google scholar
|
[34] |
Torrecillos, F., Alayrangues, J., Kilavik, B. E., & Malfait, N. (2015). Distinct modulations in sensorimotor postmovement and foreperiod β-band activities related to error salience processing and sensorimotor adaptation. Journal of Neuroscience, 35(37), 12753–12765.
CrossRef
Google scholar
|
[35] |
van der Wel, R. P. R. D., Sternad, D., & Rosenbaum, D. A. (2009). Moving the arm at different rates: Slow movements are avoided. Journal of Motor Behavior, 42(1), 29–36.
CrossRef
Google scholar
|
[36] |
Yuan, H., Perdoni, C., & He, B. (2010). Relationship between speed and EEG activity during imagined and executed hand movements. Journal of Neural Engineering, 7(2), 026001.
CrossRef
Google scholar
|
[37] |
Zhao, C., Enriquez, P., Izadifar, M., Pöppel, E., Bao, Y., & Zabotkina, V. (2022). Complementarity of mental content and logistic algorithms in a taxonomy of cognitive functions. PsyCh Journal, 11(6), 973–979.
|
/
〈 | 〉 |