In this paper, a high-sensitivity fiber Bragg grating (FBG) tilt sensor using a cantilever-based structure is introduced. Two FBGs are fixed on a specially designed elastomer. One end of the elastomer is connected to the mass block, and the other end is connected to the shell. The principle of the tilt sensor is introduced in detail, and the mathematical model is established. The performance of the sensor is studied. The results show that there is a good linear relationship between the central wavelength difference of the two FBGs and the tilt angle in the range of −5° to 5°. The repeatability of the sensor is good, and the tilt sensitivity can reach 231.7pm/°. The influence of the silicone oil on the damping capacity of the sensor is studied. The results show that the damping capacity of the sensor has been improved by sealing the silicone oil inside the shell of the sensor. The field test is carried out on a pier of an elevated bridge, and the result is good, which verifies the practicability of the sensor.
In this study, we present a dual-Fizeau-interferometer-based high-speed and wide-range fiber-optic Fabry-Perot (F-P) demodulation system. We employ two Fizeau interferometers with air cavity thickness satisfying the quadrature requirement to increase the demodulation speed and broaden the demodulation range in order to address the issues of the existing fiber F-P demodulation system’s sluggish demodulation rate and limited range. In order to investigate the demodulation properties of the dual-Fizeau-interferometer-based demodulation system, we derive and create a theoretical model of the system. The theoretical model, which primarily consists of the structural design of the interferometer and the study of the center wavelength of the light sources and their bandwidth selection, is used to construct the optical structure of the demodulation system. According to the calculation results, the demodulated signal exhibits the best contrast ratio when the two light sources’ respective center wavelengths are 780 nm and 850 nm, and their bandwidths are 28 nm and 30 nm. Finally, we finish evaluating the demodulation system’s demodulation performance, parameter calibration, and assembly debugging. The test results demonstrate the constant operation of the demodulation system, an update rate of 100 kHz, a demodulation range of 4.74 µm, and a cavity length resolution of approximately 5 nm. Additionally, the system can perform high speed demodulation thanks to the light emitting diode’s (LED’s) nanosecond level switching speed and the usage of a single point detector.
The property of maintaining the lens state of the liquid crystal (LC) lens during the switching between positive and negative lens states is made use of in the fast acquirement of multi-focus images without magnification change. A depth from focus (DFF) pipeline that can generate a low-error depth map and an all-in-focus image is proposed. The depth of the scene is then obtained via DFF pipeline from the captured images. The depth sensor proposed in this paper has the advantages of simple structure, low cost, and long service life.
We report a complementary metal oxide semiconductor (CMOS) compatible metamaterial-based spectrally selective absorber/emitter (MBSSAE) for infrared (IR) stealth, which has the low absorption/emissivity in the IR atmospheric transmission window (3 µm–5 µm, 8 µm–14 µm) and ultra-high and broadband absorption/emissivity in the IR non-atmospheric window (5 µm–8 µm). We propose a novel method for the broadband absorption/emissivity in 5 µm–8 µm with incorporation of an epsilon-near-zero (ENZ) material between the top patterned aluminum (Al) disks layer and the silicon oxide (SiO2) spacer layer. With an appropriate design, the peaks in the IR atmospheric transmission window can be suppressed while the peak intensity in the non-atmospheric window remains high. The optimized MBSSAE has an average absorption/emissivity less than 10% in 8 µm–14 µm and less than 6% in 3 µm–5 µm. And the average absorption/emissivity in 5 µm–8 µm is approximately over 64%. This proposed scheme may introduce the opportunities for the large-area and low-cost infrared stealth coating, as well as for the radiative cooling, spectral selective thermal detector, optical sensor, and thermophotovoltaic applications.
High-quality-factor (high-Q-factor) electromagnetic resonance plays an important role in sensor applications. Previously proposed gas refractive index sensors are often limited by the large cavity length or microscale fabrication process in practical applications. Recently, ultra-high Q factor resonance based on the bound state in the continuum (BIC) has provided a feasible approach to solve these problems. In this paper, we propose a metasurface structure consisting of a single size tetramer cylinder. It supports dual band toroidal dipole (TD) resonances driven by BIC. The physical mechanism of double TD resonances is clarified by the multipole decomposition of the metasurface band structure and far-field scattering power. The sensor structure based on this achieves a sensitivity of 518.3 MHz/RIU, and the maximum line width does not exceed 680 kHz. The high-Q-factor electromagnetic resonance has the advantages of polarization independence and simplicity to manufacture. These findings will open up an avenue to develop the ultrasensitive sensor in the gigahertz regime.