Coupling of Epsilon-Near-Zero Mode to Mushroom-Type Metamaterial for Optimizing Infrared Suppression and Radiative Cooling

Jiacheng Li , Shuang Liu , Shenglan Wu , Yong Liu , Zhiyong Zhong

Photonic Sensors ›› 2022, Vol. 13 ›› Issue (2) : 230231

PDF
Photonic Sensors ›› 2022, Vol. 13 ›› Issue (2) : 230231 DOI: 10.1007/s13320-022-0672-7
Article

Coupling of Epsilon-Near-Zero Mode to Mushroom-Type Metamaterial for Optimizing Infrared Suppression and Radiative Cooling

Author information +
History +
PDF

Abstract

We report a complementary metal oxide semiconductor (CMOS) compatible metamaterial-based spectrally selective absorber/emitter (MBSSAE) for infrared (IR) stealth, which has the low absorption/emissivity in the IR atmospheric transmission window (3 µm–5 µm, 8 µm–14 µm) and ultra-high and broadband absorption/emissivity in the IR non-atmospheric window (5 µm–8 µm). We propose a novel method for the broadband absorption/emissivity in 5 µm–8 µm with incorporation of an epsilon-near-zero (ENZ) material between the top patterned aluminum (Al) disks layer and the silicon oxide (SiO2) spacer layer. With an appropriate design, the peaks in the IR atmospheric transmission window can be suppressed while the peak intensity in the non-atmospheric window remains high. The optimized MBSSAE has an average absorption/emissivity less than 10% in 8 µm–14 µm and less than 6% in 3 µm–5 µm. And the average absorption/emissivity in 5 µm–8 µm is approximately over 64%. This proposed scheme may introduce the opportunities for the large-area and low-cost infrared stealth coating, as well as for the radiative cooling, spectral selective thermal detector, optical sensor, and thermophotovoltaic applications.

Keywords

Metamaterials / infrared stealth / ENZ mode / Rabi splitting / broadband thermal emitter

Cite this article

Download citation ▾
Jiacheng Li, Shuang Liu, Shenglan Wu, Yong Liu, Zhiyong Zhong. Coupling of Epsilon-Near-Zero Mode to Mushroom-Type Metamaterial for Optimizing Infrared Suppression and Radiative Cooling. Photonic Sensors, 2022, 13(2): 230231 DOI:10.1007/s13320-022-0672-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee N, Yoon B, Kim T, Bae J Y, Lim J S, Chang I, . Multiple resonance metamaterial emitter for deception of infrared emission with enhanced energy dissipation. ACS Applied Materials & Interfaces, 2020, 12(7): 8862-8869.

[2]

Feng X, Xie X, Pu M, Ma X, Guo Y, Li X, . Hierarchical metamaterials for laser-infrared-microwave compatible stealth. Optics Express, 2020, 28(7): 9445-9453.

[3]

Tang K, Wang X, Dong K, Li Y, Li J, Sun B, . A thermal radiation modulation platform by emissivity engineering with graded metal-insulator transition. Advanced Materials, 2020, 32(36): 1907071.

[4]

Lee N, Kim T, Lim J S, Chang I, Cho H H. Metamaterial-selective emitter for maximizing infrared stealth performance with energy dissipation. ACS Applied Materials & Interfaces, 2019, 11(23): 21250-21257.

[5]

Salihoglu O, Uzlu H B, Yakar O, Aas S, Balci O, Kakenov N, . Graphene-based adaptive thermal camouflage. Nano Letters, 2018, 18(7): 4541-4548.

[6]

Zhao L, Liu H, He Z, Dong S. All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth. Applied Optics, 2018, 57(8): 1757-1764.

[7]

Xiao L, Ma H, Liu J, Zhao W, Jia Y, Zhao Q, . Fast adaptive thermal stealth based on flexible VO2/Graphene/CNT thin films. Nano Letters, 2015, 15(12): 8365-8370.

[8]

Li M Y, Liu D Q, Cheng H F, Peng L, Zu M. Manipulating metals for adaptive thermal camouflage. Science Advances, 2020, 6(22): eaba3494.

[9]

Greffet J J, Carminati R, Joulain K, Mulet J P, Mainguy S, Chen Y. Coherent emission of light by thermal sources. Nature, 2002, 416(6876): 61-64.

[10]

Chalabi H, Alù A, Brongersma M L. Focused thermal emission from a nanostructured SiC surface. Physical Review B, 2016, 94(9): 094307.

[11]

Lin S Y, Fleming J G, Chow E, Bur J, Choi K K, Goldberg A. Enhancement and suppression of thermal emission by a three-dimensional photonic crystal. Physical Review B, 2000, 62(4): R2243.

[12]

Luo C, Narayanaswamy A, Chen G, Joannopoulos J. Thermal radiation from photonic crystals: a direct calculation. Physical Review Letters, 2004, 93(21): 213905.

[13]

Inoue T, De Zoysa M, Asano T, Noda S. Realization of dynamic thermal emission control. Nature Materials, 2014, 13(10): 928-931.

[14]

Costantini D, Lefebvre A, Coutrot A L, Moldovan Doyen I, Hugonin J P, Boutami S, . Plasmonic metasurface for directional and frequency-selective thermal emission. Physical Review Applied, 2015, 4(1): 014023.

[15]

Liu X, Tyler T, Starr T, Starr A F, Jokerst N M, Padilla W J. Taming the blackbody with infrared metamaterials as selective thermal emitters. Physical Review Letters, 2011, 107(4): 045901.

[16]

Baranov D G, Xiao Y, Nechepurenko I A, Krasnok A, Alù A, Kats M A. Nanophotonic engineering of far-field thermal emitters. Nature Materials, 2019, 18(9): 920-930.

[17]

Nong J P, Tang L L, Lan G L, Luo P, Li Z C, Huang D P, . Enhanced graphene plasmonic mode energy for highly sensitive molecular fingerprint retrieval. Laser & Photonics Reviews, 2021, 15(1): 2000300.

[18]

Nong J P, Tang L L, Lan G L, Luo P, Li Z C, Huang D P, . Combined visible plasmons of Ag nanoparticles and infrared plasmons of graphene nanoribbons for high-performance surface-enhanced Raman and infrared spectroscopies. Small, 2021, 17(1): 2004640.

[19]

Luo P, Wei W, Lan G, Wei X, Meng L, Liu Y, . Dynamical manipulation of a dual-polarization plasmon-induced transparency employing an anisotropic graphene-black phosphorus heterostructure. Optics Express, 2021, 29(19): 29690-29703.

[20]

Du K K, Li Q, Lyu Y B, Ding J C, Lu Y, Cheng Z Y, . Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light: Science Applications, 2017, 6(1): e16194.

[21]

Streyer W, Law S, Rooney G, Jacobs T, Wasserman D. Strong absorption and selective emission from engineered metals with dielectric coatings. Optics Express, 2013, 21(7): 9113-9122.

[22]

Kim T, Bae J Y, Lee N, Cho H H. Hierarchical metamaterials for multispectral stealth of infrared and microwaves. Advanced Function Materials, 2019, 29(10): 1807319.

[23]

Peng L, Liu D Q, Cheng H F, Zhou S, Zu M. A multilayer film based selective thermal emitter for infrared stealth technology. Advanced Optical Materials, 2018, 6(23): 1801006.

[24]

Pan M, Huang Y, Li Q, Luo H, Zhu H, Kaur S, . Multi-band middle-infrared-compatible stealth with thermal management via simple photonic structures. Nano Energy, 2020, 69, 104449.

[25]

Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534-537.

[26]

Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science, 2015, 349(6254): 1310-1314.

[27]

Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402.

[28]

Hao J, Zhou L, Qiu M. Nearly total absorption of light and heat generation by plasmonic metamaterials. Physical Review B, 2011, 83(16): 165107.

[29]

Liu X, Starr T, Starr A F, Padilla W J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical Review Letters, 2010, 104(20): 207403.

[30]

Liu N, Mesch M, Weiss T, Hentschel M, Giessen H. Infrared perfect absorber and its application as plasmonic sensor. Nano Letters, 2010, 10(7): 2342-2348.

[31]

Mason J A, Smith S, Wasserman D. Strong absorption and selective thermal emission from a midinfrared metamaterial. Applied Physics Letters, 2011, 98(24): 241105.

[32]

Tittl A, Michel A K U, Schäferling M, Yin X H, Gholipour B, Cui L, . A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Advanced Materials, 2015, 27(31): 4597-4603.

[33]

Puscasu I, Schaich W L. Narrow-band, tunable infrared emission from arrays of microstrip patches. Applied Physics Letters, 2008, 92(23): 233102.

[34]

Ok G, Youn H, Kwak M K, Lee K, Shin Y J, Guo L J, . Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters. Applied Physics Letters, 2012, 101(22): 223102.

[35]

Hendrickson J R, Vangala S, Dass C, Gibson R, Goldsmith J, Leedy K, . Coupling of epsilon-near-zero mode to gap plasmon mode for flat-top wideband perfect light absorption. ACS Photonics, 2018, 5(3): 776-781.

[36]

Li Y, Zhang P, Liu Y, Jiang R, Gong Y, Deng L, . Infrared epsilon-near-zero absorption excited by magnetic dipole resonance. Optics Communications, 2020, 472, 126015.

[37]

Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/.

[38]

Palik E D. Handbook of optical constants of solids, 1998, San Diego: Academic Press

[39]

Rakić A D, Djurišic A B, Elazar J M, Majewski M L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Aed Optics, 1998, 37(22): 5271-5283.

[40]

Kirchhoff G. On the relation between the radiating and the absorbing powers of different bodies for light and heat. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1860, 20, 1-21.

[41]

Park J, Kang J H, Liu X, Brongersma M L. Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers. Scientific Reports, 2015, 5(1): 1-9.

[42]

Chen Y B, Chiu F C. Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons. Optics Express, 2013, 21(18): 20771-20785.

[43]

Yoo D, de León-Pérez F, Pelton M, Lee I H, Mohr D A, Raschke M B, . Ultrastrong plasmon-phonon coupling via epsilon-near-zero nanocavities. Nature Photonics, 2021, 15(2): 125-130.

[44]

Basu S, Lee B J, Zhang Z M. Infrared radiative properties of heavily doped silicon at room temperature. ASME Journal of Heat Transfer, 2010, 132(2): 023301.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/