High-Performance Quality Factor Based Sensor With Diagonal Cylinder Metasurface of the Bound State in the Continuum

Yuxuan Chen , Yuke Li , Zhengda Hu , Zexiang Wang , Zhenxing Li , Jicheng Wang

Photonic Sensors ›› 2022, Vol. 13 ›› Issue (2) : 230232

PDF
Photonic Sensors ›› 2022, Vol. 13 ›› Issue (2) : 230232 DOI: 10.1007/s13320-022-0673-6
Regular

High-Performance Quality Factor Based Sensor With Diagonal Cylinder Metasurface of the Bound State in the Continuum

Author information +
History +
PDF

Abstract

High-quality-factor (high-Q-factor) electromagnetic resonance plays an important role in sensor applications. Previously proposed gas refractive index sensors are often limited by the large cavity length or microscale fabrication process in practical applications. Recently, ultra-high Q factor resonance based on the bound state in the continuum (BIC) has provided a feasible approach to solve these problems. In this paper, we propose a metasurface structure consisting of a single size tetramer cylinder. It supports dual band toroidal dipole (TD) resonances driven by BIC. The physical mechanism of double TD resonances is clarified by the multipole decomposition of the metasurface band structure and far-field scattering power. The sensor structure based on this achieves a sensitivity of 518.3 MHz/RIU, and the maximum line width does not exceed 680 kHz. The high-Q-factor electromagnetic resonance has the advantages of polarization independence and simplicity to manufacture. These findings will open up an avenue to develop the ultrasensitive sensor in the gigahertz regime.

Keywords

Metasurfaces / bound state in the continuum / toroidal dipole

Cite this article

Download citation ▾
Yuxuan Chen, Yuke Li, Zhengda Hu, Zexiang Wang, Zhenxing Li, Jicheng Wang. High-Performance Quality Factor Based Sensor With Diagonal Cylinder Metasurface of the Bound State in the Continuum. Photonic Sensors, 2022, 13(2): 230232 DOI:10.1007/s13320-022-0673-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu C, Arju N, Kelp G, Fan J A, Dominguez J, Gonzales E, . Spectrally 228 selective chiral silicon metasurfaces based on infrared Fano resonances. Nature Communications, 2014, 5(1): 1-9.

[2]

Al-Naib I, Jansen C, Koch M. High-Q factor metasurfaces based on miniaturized asymmetric single split resonators. Applied Physics Letters, 2009, 94(15): 153505.

[3]

Quaranta G, Basset G, Martin O J F, Gallinet B. Recent advances in resonant waveguide gratings. Laser & Photonics Reviews, 2018, 12(9): 1800017.

[4]

Savelev R S, Filonov D S, Petrov M I, Krasnok A E, Belov P A, Kivshar Y S. Resonant transmission of light in chains of high-index dielectric particles. Physical Review B, 2015, 92(15): 155415.

[5]

Zhong J, Xu X, Lin Y S. Tunable terahertz metamaterial with electromagnetically induced transparency characteristic for sensing application. Nanomaterials, 2021, 11(9): 2195.

[6]

Min B, Ostby E, Sorger V, Ulin-Avila E, Yang L, Zhang X, . High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature, 2009, 457(7228): 455-458.

[7]

Maksimov D N, Gerasimov V S, Romano S, Polyutov S P. Refractive index sensing with optical bound states in the continuum. Optics Express, 2020, 28(26): 38907-38916.

[8]

Romano S, Zito G, Torino S, Calafiore G, Penzo E, Coppola G, . Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum. Photonics Research, 2018, 6(7): 726-733.

[9]

Stillinger F H, Herrick D R. Bound states in the continuum. Physical Review A, 1975, 11(2): 446.

[10]

Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljai M. Bound states in the continuum. Nature Reviews Materials, 2016, 1(9): 1-13.

[11]

Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Physical Review Letters, 2018, 121(19): 193903.

[12]

He Y, Guo G, Feng T, Xu Y, Miroshnichenko A E. Toroidal dipole bound states in the continuum. Physical Review B, 2018, 98(16): 161112.

[13]

Bai T, Li Q, Wang Y, Chen Y, Hu Z D, Wang J. Terahertz vortex beam generator based on bound states in the continuum. Optics Express, 2021, 29(16): 25270-25279.

[14]

Wang Y, Han Z, Du Y, Qin J. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface. Nanophotonics, 2021, 10(4): 1295-1307.

[15]

Li S, Zhou C, Liu T, Xiao S. Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces. Physical Review A, 2019, 100(6): 063803.

[16]

Fan Y, Zhang F, Shen N H, Fu Q, Wei Z, Li H, . Achieving a high-Q response in metamaterialsby manipulating the toroidal excitations. Physical Review A, 2018, 97(3): 033816.

[17]

Mi Q, Sang T, Pei Y, Yang C, Li S, Wang Y, . High-quality-factor dual-band Fano resonances induced by dual bound states in the continuum using a planar nanohole slab. Nanoscale Research Letters, 2021, 16(1): 1-11.

[18]

Huang Y W, Chen W T, Wu P C, Fedotov V, Savinov V, Ho Y Z, . Design of plasmonic toroidal metamaterials at optical frequencies. Optics Express, 2012, 20(2): 1760-1768.

[19]

Han S, Cong L, Gao F, Singh R, Yang H. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials. Annalen der Physik, 2016, 528(5): 352-357.

[20]

Kazemi N, Schofield K, Musilek P. A high-resolution reflective microwave planar sensor for sensing of vanadium electrolyte. Sensors, 2021, 21(11): 3759.

[21]

Algorri J F, Zografopoulos D C, Ferraro A, García-Cámara B, Vergaz R, Beccherelli R, . Anapole modes in hollow nanocuboid dielectric metasurfaces for refractometric sensing. Nanomaterials, 2018, 9(1): 30.

[22]

Bernini R, Persichetti G, Catalano E, Zeni L, Minardo A. Refractive index sensing by Brillouin scattering in side-polished optical fibers. Optics Letters, 2018, 43(10): 2280-2283.

[23]

Yang X, Bandyopadhyay S, Shao L Y, Xiao D, Gu G, Song Z. Side-polished DBR fiber laser with enhanced sensitivity for axial force and refractive index measurement. IEEE Photonics Journal, 2019, 11(3): 1-10.

[24]

Chenhui H, Li Q, Hao L, Linghao C. Brillouin refractive index sensing technique based on micro-nano fiber. Laser & Optoelectronics Progress, 2019, 56(17): 170626.

[25]

Minardo A, Zeni L, Bernini R, Catalano E, Vallifuoco R. Quasi-distributed refractive index sensing by 267 stimulated Brillouin scattering in tapered optical fibers. Journal of Lightwave Technology, 2022, 40(8): 2619-2624.

[26]

Abdolrazzaghi M, Daneshmand M. Dual active resonator for dispersion coefficient measurement of asphaltene nano-particles. IEEE Sensors Journal, 2017, 17(22): 7248-7256.

[27]

Liu Z, Xu Y, Lin Y, Xiang J, Feng T, Cao Q, . High-Q quasibound states in the continuum for nonlinear metasurfaces. Physical Review Letters, 2019, 123(25): 253901.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/