Aug 2024, Volume 15 Issue 8
    

  • Select all
  • RECOLLECTION
    Le Kang
  • REVIEW
    Guixin Yuan, Xixi Lin, Ying Liu, Matthew B. Greenblatt, Ren Xu

    Tissue-resident stem cells are essential for development and repair, and in the skeleton, this function is fulfilled by recently identified skeletal stem cells (SSCs). However, recent work has identified that SSCs are not monolithic, with long bones, craniofacial sites, and the spine being formed by distinct stem cells. Recent studies have utilized techniques such as fluorescence-activated cell sorting, lineage tracing, and single-cell sequencing to investigate the involvement of SSCs in bone development, homeostasis, and disease. These investigations have allowed researchers to map the lineage commitment trajectory of SSCs in different parts of the body and at different time points. Furthermore, recent studies have shed light on the characteristics of SSCs in both physiological and pathological conditions. This review focuses on discussing the spatiotemporal distribution of SSCs and enhancing our understanding of the diversity and plasticity of SSCs by summarizing recent discoveries.

  • RESEARCH ARTICLE
    Zikai Zheng, Jiaming Li, Tianzi Liu, Yanling Fan, Qiao-Cheng Zhai, Muzhao Xiong, Qiao-Ran Wang, Xiaoyan Sun, Qi-Wen Zheng, Shanshan Che, Beier Jiang, Quan Zheng, Cui Wang, Lixiao Liu, Jiale Ping, Si Wang, Dan-Dan Gao, Jinlin Ye, Kuan Yang, Yuesheng Zuo, Shuai Ma, Yun-Gui Yang, Jing Qu, Feng Zhang, Peilin Jia, Guang-Hui Liu, Weiqi Zhang

    Epigenetic clocks are accurate predictors of human chronological age based on the analysis of DNA methylation (DNAm) at specific CpG sites. However, a systematic comparison between DNA methylation data and other omics datasets has not yet been performed. Moreover, available DNAm age predictors are based on datasets with limited ethnic representation. To address these knowledge gaps, we generated and analyzed DNA methylation datasets from two independent Chinese cohorts, revealing age-related DNAm changes. Additionally, a DNA methylation aging clock (iCAS-DNAmAge) and a group of DNAm-based multi-modal clocks for Chinese individuals were developed, with most of them demonstrating strong predictive capabilities for chronological age. The clocks were further employed to predict factors influencing aging rates. The DNAm aging clock, derived from multi-modal aging features (compositeAge-DNAmAge), exhibited a close association with multi-omics changes, lifestyles, and disease status, underscoring its robust potential for precise biological age assessment. Our findings offer novel insights into the regulatory mechanism of age-related DNAm changes and extend the application of the DNAm clock for measuring biological age and aging pace, providing the basis for evaluating aging intervention strategies.

  • RESEARCH ARTICLE
    Jian Wu, Chaoye Wang, Shuhui Sun, Tianmin Ren, Lijie Pan, Hongyi Liu, Simeng Hou, Shen Wu, Xuejing Yan, Jingxue Zhang, Xiaofang Zhao, Weihai Liu, Sirui Zhu, Shuwen Wei, Chi Zhang, Xu Jia, Qi Zhang, Ziyu Yu, Yehong Zhuo, Qi Zhao, Chenlong Yang, Ningli Wang

    The progressive degradation in the trabecular meshwork (TM) is related to age-related ocular diseases like primary open-angle glaucoma. However, the molecular basis and biological significance of the aging process in TM have not been fully elucidated. Here, we established a dynamic single-cell transcriptomic landscape of aged macaque TM, wherein we classified the outflow tissue into 12 cell subtypes and identified mitochondrial dysfunction as a prominent feature of TM aging. Furthermore, we divided TM cells into 13 clusters and performed an in-depth analysis on cluster 0, which had the highest aging score and the most significant changes in cell proportions between the two groups. Ultimately, we found that the APOE gene was an important differentially expressed gene in cluster 0 during the aging process, highlighting the close relationship between cell migration and extracellular matrix regulation, and TM function. Our work further demonstrated that silencing the APOE gene could increase migration and reduce apoptosis by releasing the inhibition on the PI3K-AKT pathway and downregulating the expression of extracellular matrix components, thereby increasing the aqueous outflow rate and maintaining intraocular pressure within the normal range. Our work provides valuable insights for future clinical diagnosis and treatment of glaucoma.

  • RESEARCH ARTICLE
    Qinchao Hu, Bin Zhang, Yaobin Jing, Shuai Ma, Lei Hu, Jingyi Li, Yandong Zheng, Zijuan Xin, Jianmin Peng, Si Wang, Bin Cheng, Jing Qu, Weiqi Zhang, Guang-Hui Liu, Songlin Wang

    Aging has a profound impact on the gingiva and significantly increases its susceptibility to periodontitis, a worldwide prevalent inflammatory disease. However, a systematic characterization and comprehensive understanding of the regulatory mechanism underlying gingival aging is still lacking. Here, we systematically dissected the phenotypic characteristics of gingiva during aging in primates and constructed the first single-nucleus transcriptomic landscape of gingival aging, by which a panel of cell type-specific signatures were elucidated. Epithelial cells were identified as the most affected cell types by aging in the gingiva. Further analyses pinpointed the crucial role of YAP in epithelial self-renew and homeostasis, which declined during aging in epithelial cells, especially in basal cells. The decline of YAP activity during aging was confirmed in the human gingival tissues, and downregulation of YAP in human primary gingival keratinocytes recapitulated the major phenotypic defects observed in the aged primate gingiva while overexpression of YAP showed rejuvenation effects. Our work provides an in-depth understanding of gingival aging and serves as a rich resource for developing novel strategies to combat aging-associated gingival diseases, with the ultimate goal of advancing periodontal health and promoting healthy aging.