REVIEW

Inflammasomes in cancer: a double-edged sword

  • Ryan Kolb 1 ,
  • Guang-Hui Liu 2,3 ,
  • Ann M. Janowski 4 ,
  • Fayyaz S. Sutterwala 4,5,6 ,
  • Weizhou Zhang , 1
Expand
  • 1. Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
  • 2. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
  • 3. Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
  • 4. Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
  • 5. Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
  • 6. Veterans Affairs Medical Center, Iowa City, IA 52241, USA

Received date: 23 Jun 2013

Accepted date: 11 Jul 2013

Published date: 01 Jan 2014

Copyright

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Chronic inflammatory responses have long been observed to be associated with various types of cancer and play decisive roles at different stages of cancer development. Inflammasomes, which are potent inducers of interleukin (IL)-1β and IL-18 during inflammation, are large protein complexes typically consisting of a Nod-like receptor (NLR), the adapter protein ASC, and Caspase-1. During malignant transformation or cancer therapy, the inflammasomes are postulated to become activated in response to danger signals arising from the tumors or from therapy-induced damage to the tumor or healthy tissue. The activation of inflammasomes plays diverse and sometimes contrasting roles in cancer promotion and therapy depending on the specific context. Here we summarize the role of different inflammasome complexes in cancer progression and therapy. Inflammasome components and pathways may provide novel targets to treat certain types of cancer; however, using such agents should be cautiously evaluated due to the complex roles that inflammasomes and proinflammatory cytokines play in immunity.

Cite this article

Ryan Kolb , Guang-Hui Liu , Ann M. Janowski , Fayyaz S. Sutterwala , Weizhou Zhang . Inflammasomes in cancer: a double-edged sword[J]. Protein & Cell, 2014 , 5(1) : 12 -20 . DOI: 10.1007/s13238-013-0001-4

1
AllenIC, TeKippeEM, WoodfordRM, UronisJM, HollEK, RogersAB, HerfarthHH, JobinC, TingJP (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med207: 1045-1056

DOI

2
AllenIC, WilsonJE, SchneiderM, LichJD, RobertsRA, ArthurJC, WoodfordRM, DavisBK, UronisJM, HerfarthHH (2012) NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity36: 742-754

DOI

3
BassoD, ScrignerM, TomaA, NavagliaF, Di MarioF, RuggeM, PlebaniM (1996) Helicobacter pylori infection enhances mucosal interleukin-1 beta, interleukin-6, and the soluble receptor of interleukin-2. Int J Clin Lab Res26: 207-210

DOI

4
BauerC, DuewellP, MayerC, LehrHA, FitzgeraldKA, DauerM, TschoppJ, EndresS, LatzE, SchnurrM (2010) Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut59: 1192-1199

DOI

5
BauernfeindF, HornungV (2013) Of inflammasomes and pathogens -sensing of microbes by the inflammasome. EMBO Mol Med5: 814-826

DOI

6
BauernfeindFG, HorvathG, StutzA, AlnemriES, MacDonaldK, SpeertD, Fernandes-AlnemriT, WuJ, MonksBG, FitzgeraldKA (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol183: 787-791

DOI

7
BauernfeindF, AblasserA, BartokE, KimS, Schmid-BurgkJ, CavlarT, HornungV (2011) Inflammasomes: current understanding and open questions. Cell Mol Life Sci68: 765-783

DOI

8
BuntSK, ClementsVK, HansonEM, SinhaP, Ostrand-RosenbergS (2009) Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J Leukoc Biol85: 996-1004

DOI

9
BurdetteD, HaskettA, PresserL, McRaeS, IqbalJ, WarisG (2012) Hepatitis C virus activates interleukin-1beta via caspase-1- inflammasome complex. J Gen Virol93: 235-246

DOI

10
ChaveyC, BibeauF, Gourgou-BourgadeS, BurlinchonS, BoissiereF, LauneD, RoquesS, LazennecG (2007) Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res9: R15

DOI

11
ChenGY, NunezG (2011) Inflammasomes in intestinal inflammation and cancer. Gastroenterology141: 1986-1999

DOI

12
ChenGY, LiuM, WangF, BertinJ, NunezG (2011) A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol186: 7187-7194

DOI

13
ChowMT, SceneayJ, PagetC, WongCS, DuretH, TschoppJ, MollerA, SmythMJ (2012) NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases. Cancer Res72: 5721-5732

DOI

14
CoussensLM, ZitvogelL, PaluckaAK (2013) Neutralizing tumorpromoting chronic inflammation: a magic bullet? Science339: 286-291

DOI

15
Di VirgilioF (2013) The therapeutic potential of modifying inflammasomes and NOD-Like receptors. Pharmacol Rev65: 872-905

DOI

16
DinarelloCA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol27: 519-550

DOI

17
DinarelloCA (2011) Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood117: 3720-3732

DOI

18
DostertC, PetrilliV, Van BruggenR, SteeleC, MossmanBT, TschoppJ (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science320: 674-677

DOI

19
DrexlerSK, BonsignoreL, MasinM, TardivelA, JackstadtR, HermekingH, SchneiderP, GrossO, TschoppJ, YazdiAS (2012) Tissue-speciflc opposing functions of the inflammasome adaptor ASC in the regulation of epithelial skin carcinogenesis. Proc Natl Acad Sci USA109: 18384-18389

DOI

20
DunnJH, EllisLZ, FujitaM (2012) Inflammasomes as molecular mediators of inflammation and cancer: potential role in melanoma. Cancer Lett314: 24-33

DOI

21
Dupaul-ChicoineJ, YeretssianG, DoironK, BergstromKS, McIntireCR, LeBlancPM, MeunierC, TurbideC, GrosP, BeaucheminN (2010) Control of intestinal homeostasis, colitis, and colitisassociated colorectal cancer by the inflammatory caspases. Immunity32: 367-378

DOI

22
EisenbarthSC, FlavellRA (2009) Innate instruction of adaptive immunity revisited: the inflammasome. EMBO Mol Med1: 92-98

DOI

23
ElinavE, StrowigT, KauAL, Henao-MejiaJ, ThaissCA, BoothCJ, PeaperDR, BertinJ, EisenbarthSC, GordonJI (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell145: 745-757

DOI

24
ElkabetsM, RibeiroVS, DinarelloCA, Ostrand-RosenbergS, Di SantoJP, ApteRN, VosshenrichCA (2010) IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol40: 3347-3357

DOI

25
ElliottMR, ChekeniFB, TrampontPC, LazarowskiER, KadlA, WalkSF, ParkD, WoodsonRI, OstankovichM, SharmaP (2009) Nucleotides released by apoptotic cells act as a flnd-me signal to promote phagocytic clearance. Nature461: 282-286

DOI

26
El-OmarEM, CarringtonM, ChowWH, McCollKE, BreamJH, YoungHA, HerreraJ, LissowskaJ, YuanCC, RothmanN (2000) Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature404: 398-402

DOI

27
Fernandes-AlnemriT, YuJW, DattaP, WuJ, AlnemriES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature458: 509-513

DOI

28
Fernandes-AlnemriT, YuJW, JulianaC, SolorzanoL, KangS, WuJ, DattaP, McCormickM, HuangL, McDermottE (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol11: 385-393

DOI

29
FerroneC, DranoffG (2010) Dual roles for immunity in gastrointestinal cancers. J Clin Oncol28: 4045-4051

DOI

30
FranchiL, NunezG (2012) Immunology. Orchestrating inflammasomes. Science337: 1299-1300

DOI

31
FranchiL, AmerA, Body-MalapelM, KannegantiTD, OzorenN, JagirdarR, InoharaN, VandenabeeleP, BertinJ, CoyleA (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol7: 576-582

DOI

32
GhiringhelliF, ApetohL, TesniereA, AymericL, MaY, OrtizC, VermaelenK, PanaretakisT, MignotG, UllrichE (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med15: 1170-1178

DOI

33
GreenDR, KroemerG (2005) Pharmacological manipulation of cell death: clinical applications in sight? J Clin Invest115: 2610-2617

DOI

34
GringhuisSI, KapteinTM, WeversBA, TheelenB, van der VlistM, BoekhoutT, GeijtenbeekTB (2012) Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1beta via a noncanonical caspase-8 inflammasome. Nat Immunol13: 246-254

DOI

35
GrivennikovSI, GretenFR, KarinM (2010) Immunity, inflammation, and cancer. Cell140: 883-899

DOI

36
HornungV, AblasserA, Charrel-DennisM, BauernfeindF, HorvathG, CaffreyDR, LatzE, FitzgeraldKA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature458: 514-518

DOI

37
HuB, ElinavE, HuberS, BoothCJ, StrowigT, JinC, EisenbarthSC, FlavellRA (2010) Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci USA107: 21635-21640

DOI

38
HuB, ElinavE, FlavellRA (2011) Inflammasome-mediated suppression of inflammation-induced colorectal cancer progression is mediated by direct regulation of epithelial cell proliferation. Cell Cycle10: 1936-1939

DOI

39
IdzkoM, DichmannS, FerrariD, Di VirgilioF, la SalaA, GirolomoniG, PantherE, NorgauerJ (2002) Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2y receptors. Blood100: 925-932

DOI

40
IyerSS, PulskensWP, SadlerJJ, ButterLM, TeskeGJ, UllandTK, EisenbarthSC, FlorquinS, FlavellRA, LeemansJC (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci USA106: 20388-20393

DOI

41
JeeCD, LeeHS, BaeSI, YangHK, LeeYM, RhoMS, KimWH (2005) Loss of caspase-1 gene expression in human gastric carcinomas and cell lines. Int J Oncol26: 1265-1271

42
JinL, YuanRQ, FuchsA, YaoY, JosephA, SchwallR, SchnittSJ, GuidaA, HastingsHM, AndresJ (1997) Expression of interleukin-1beta in human breast carcinoma. Cancer80: 421-434

DOI

43
JulianaC, Fernandes-AlnemriT, KangS, FariasA, QinF, AlnemriES (2012) Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem287: 36617-36622

DOI

44
KanavyHE, GerstenblithMR (2011) Ultraviolet radiation and melanoma. Semin Cutan Med Surg30: 222-228

DOI

45
KayagakiN, WarmingS, LamkanflM, Vande WalleL, LouieS, DongJ, NewtonK, QuY, LiuJ, HeldensS (2011) Non-canonical inflammasome activation targets caspase-11. Nature479: 117-121

DOI

46
KimS, BauernfeindF, AblasserA, HartmannG, FitzgeraldKA, LatzE, HornungV (2010) Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. Eur J Immunol40: 1545-1551

DOI

47
LamkanflM, DixitVM (2009) The inflammasomes. PLoS Pathog5: e1000510

DOI

48
LiY, WangL, PappanL, Galliher-BeckleyA, ShiJ (2012) IL-1beta promotes stemness and invasiveness of colon cancer cells through Zeb1 activation. Mol Cancer11: 87

DOI

49
LiuX, WangZ, YuJ, LeiG, WangS (2010) Three polymorphisms in interleukin-1beta gene and risk for breast cancer: a metaanalysis. Breast Cancer Res Treat124: 821-825

DOI

50
LiuW, LuoY, DunnJH, NorrisDA, DinarelloCA, FujitaM (2013) Dual role of apoptosis-associated speck-like protein containing a CARD (ASC) in tumorigenesis of human melanoma. J Invest Dermatol133: 518-527

DOI

51
LocherC, ConfortiR, AymericL, MaY, YamazakiT, RusakiewiczS, TesniereA, GhiringhelliF, ApetohL, MorelY (2010) Desirable cell death during anticancer chemotherapy. Ann N Y Acad Sci1209: 99-108

DOI

52
MachadoJC, PharoahP, SousaS, CarvalhoR, OliveiraC, FigueiredoC, AmorimA, SerucaR, CaldasC, CarneiroF (2001) Interleukin 1B and interleukin 1RN polymorphisms are associated with increased risk of gastric carcinoma. Gastroenterology121: 823-829

DOI

53
MariathasanS, NewtonK, MonackDM, VucicD, FrenchDM, LeeWP, Roose-GirmaM, EricksonS, DixitVM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature430: 213-218

DOI

54
MariathasanS, WeissDS, NewtonK, McBrideJ, O’RourkeK, Roose-GirmaM, LeeWP, WeinrauchY, MonackDM, DixitVM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature440: 228-232

DOI

55
MartinonF, PetrilliV, MayorA, TardivelA, TschoppJ (2006) Goutassociated uric acid crystals activate the NALP3 inflammasome. Nature440: 237-241

DOI

56
MartinsI, TesniereA, KeppO, MichaudM, SchlemmerF, SenovillaL, SerorC, MetivierD, PerfettiniJL, ZitvogelL (2009) Chemotherapy induces ATP release from tumor cells. Cell Cycle8: 3723-3728

DOI

57
MattarolloSR, LoiS, DuretH, MaY, ZitvogelL, SmythMJ (2011) Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res71: 4809-4820

DOI

58
McNamaraD, El-OmarE (2008) Helicobacter pylori infection and the pathogenesis of gastric cancer: a paradigm for host-bacterial interactions. Dig Liver Dis40: 504-509

DOI

59
MiaoEA, Alpuche-ArandaCM, DorsM, ClarkAE, BaderMW, MillerSI, AderemA (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol7: 569-575

DOI

60
MiaoEA, ErnstRK, DorsM, MaoDP, AderemA (2008) Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc Natl Acad Sci USA105: 2562-2567

DOI

61
MiaoEA, RajanJV, AderemA (2011) Caspase-1-induced pyroptotic cell death. Immunol Rev243: 206-214

DOI

62
NegashAA, RamosHJ, CrochetN, LauDT, DoehleB, PapicN, DelkerDA, JoJ, BertolettiA, HagedornCH (2013) IL-1beta production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PLoS Pathog9: e1003330

DOI

63
NormandS, Delanoye-CrespinA, BressenotA, HuotL, GrandjeanT, Peyrin-BirouletL, LemoineY, HotD, ChamaillardM (2011) Nodlike receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc Natl Acad Sci USA108: 9601-9606

DOI

64
OkamotoM, LiuW, LuoY, TanakaA, CaiX, NorrisDA, DinarelloCA, FujitaM (2010) Constitutively active inflammasome in human melanoma cells mediating autoinflammation via caspase-1 processing and secretion of interleukin-1beta. J Biol Chem285: 6477-6488

DOI

65
PantschenkoAG, PushkarI, AndersonKH, WangY, MillerLJ, KurtzmanSH, BarrowsG, KreutzerDL (2003) The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol23: 269-284

66
RamanD, BaugherPJ, ThuYM, RichmondA (2007) Role of chemokines in tumor growth. Cancer Lett256: 137-165

DOI

67
RathinamVA, JiangZ, WaggonerSN, SharmaS, ColeLE, WaggonerL, VanajaSK, MonksBG, GanesanS, LatzE (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol11: 395-402

DOI

68
ReedJR, LeonRP, HallMK, SchwertfegerKL (2009) Interleukin-1beta and flbroblast growth factor receptor 1 cooperate to induce cyclooxygenase-2 during early mammary tumourigenesis. Breast Cancer Res11:R21

DOI

69
SagulenkoV, ThygesenSJ, SesterDP, IdrisA, CridlandJA, VajjhalaPR, RobertsTL, SchroderK, VinceJE, HillJM (2013) AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ20: 1149-1160

DOI

70
SakuraiT, HeG, MatsuzawaA, YuGY, MaedaS, HardimanG, KarinM (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell14: 156-165

DOI

71
SalcedoR, WorschechA, CardoneM, JonesY, GyulaiZ, DaiRM, WangE, MaW, HainesD, O’HUiginC (2010) MyD88- mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med207: 1625-1636

DOI

72
SchroderK, TschoppJ (2010) The inflammasomes. Cell140: 821-832

DOI

73
SchroderK, SagulenkoV, ZamoshnikovaA, RichardsAA, CridlandJA, IrvineKM, StaceyKJ, SweetMJ (2012) Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction. Immunobiology217: 1325-1329

DOI

74
SevkoA, UmanskyV (2013) Myeloid-derived suppressor cells interact with tumors in terms of myelopoiesis, tumorigenesis and immunosuppression: thick as thieves. J Cancer4: 3-11

DOI

75
SiegmundB, LehrHA, FantuzziG, DinarelloCA (2001) IL-1 betaconverting enzyme (caspase-1) in intestinal inflammation. Proc Natl Acad Sci USA98: 13249-13254

DOI

76
SnoussiK, StrosbergAD, BouaouinaN, Ben AhmedS, ChouchaneL (2005) Genetic variation in pro-inflammatory cytokines (interleukin-1beta, interleukin-1alpha and interleukin-6) associated with the aggressive forms, survival, and relapse prediction of breast carcinoma. Eur Cytokine Netw16: 253-260

77
SrivastavaS, SalimN, RobertsonMJ (2010) Interleukin-18: biology and role in the immunotherapy of cancer. Curr Med Chem17: 3353-3357

DOI

78
StehlikC, FiorentinoL, DorfleutnerA, BrueyJM, ArizaEM, SagaraJ, ReedJC (2002) The PAAD/PYRIN-family protein ASC is a dual regulator of a conserved step in nuclear factor kappaB activation pathways. J Exp Med196: 1605-1615

DOI

79
SuzukiT, FranchiL, TomaC, AshidaH, OgawaM, YoshikawaY, MimuroH, InoharaN, SasakawaC, NunezG (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog3: e111

DOI

80
TermeM, UllrichE, AymericL, MeinhardtK, DesboisM, DelahayeN, ViaudS, RyffelB, YagitaH, KaplanskiG (2011) IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res71: 5393-5399

DOI

81
TuS, BhagatG, CuiG, TakaishiS, Kurt-JonesEA, RickmanB, BetzKS, Penz-OesterreicherM, BjorkdahlO, FoxJG (2008) Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell14: 408-419

DOI

82
van DeventerHW, BurgentsJE, WuQP, WoodfordRM, BrickeyWJ, AllenIC, McElvania-TekippeE, SerodyJS, TingJP (2010) The inflammasome component NLRP3 impairs antitumor vaccine by enhancing the accumulation of tumor-associated myeloid-derived suppressor cells. Cancer Res70: 10161-10169

DOI

83
WangP, XiaHH, ZhangJY, DaiLP, XuXQ, WangKJ (2007) Association of interleukin-1 gene polymorphisms with gastric cancer: a meta-analysis. Int J Cancer120: 552-562

DOI

84
ZakiMH, BoydKL, VogelP, KastanMB, LamkanflM, KannegantiTD (2010a) The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity32: 379-391

DOI

85
ZakiMH, VogelP, Body-MalapelM, LamkanflM, KannegantiTD (2010b) IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol185: 4912-4920

DOI

86
ZakiMH, VogelP, MalireddiRK, Body-MalapelM, AnandPK, BertinJ, GreenDR, LamkanflM, KannegantiTD (2011) The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell20: 649-660

DOI

87
ZamboniDS, KobayashiKS, KohlsdorfT, OguraY, LongEM, VanceRE, KuidaK, MariathasanS, DixitVM, FlavellRA (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol7: 318-325

DOI

88
ZhuY, ZhuM, LanceP (2012) IL1beta-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells. Exp Cell Res318: 2520-2530

DOI

89
ZitvogelL, KeppO, GalluzziL, KroemerG (2012) Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol13: 343-351

DOI

Outlines

/