Inflammasomes in cancer: a double-edged sword
Ryan Kolb, Guang-Hui Liu, Ann M. Janowski, Fayyaz S. Sutterwala, Weizhou Zhang
Inflammasomes in cancer: a double-edged sword
Chronic inflammatory responses have long been observed to be associated with various types of cancer and play decisive roles at different stages of cancer development. Inflammasomes, which are potent inducers of interleukin (IL)-1β and IL-18 during inflammation, are large protein complexes typically consisting of a Nod-like receptor (NLR), the adapter protein ASC, and Caspase-1. During malignant transformation or cancer therapy, the inflammasomes are postulated to become activated in response to danger signals arising from the tumors or from therapy-induced damage to the tumor or healthy tissue. The activation of inflammasomes plays diverse and sometimes contrasting roles in cancer promotion and therapy depending on the specific context. Here we summarize the role of different inflammasome complexes in cancer progression and therapy. Inflammasome components and pathways may provide novel targets to treat certain types of cancer; however, using such agents should be cautiously evaluated due to the complex roles that inflammasomes and proinflammatory cytokines play in immunity.
inflammasome / cancer / inflammation
[1] |
AllenIC, TeKippeEM, WoodfordRM, UronisJM, HollEK, RogersAB, HerfarthHH, JobinC, TingJP (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med207: 1045-1056
CrossRef
Google scholar
|
[2] |
AllenIC, WilsonJE, SchneiderM, LichJD, RobertsRA, ArthurJC, WoodfordRM, DavisBK, UronisJM, HerfarthHH
CrossRef
Google scholar
|
[3] |
BassoD, ScrignerM, TomaA, NavagliaF, Di MarioF, RuggeM, PlebaniM (1996) Helicobacter pylori infection enhances mucosal interleukin-1 beta, interleukin-6, and the soluble receptor of interleukin-2. Int J Clin Lab Res26: 207-210
CrossRef
Google scholar
|
[4] |
BauerC, DuewellP, MayerC, LehrHA, FitzgeraldKA, DauerM, TschoppJ, EndresS, LatzE, SchnurrM (2010) Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut59: 1192-1199
CrossRef
Google scholar
|
[5] |
BauernfeindF, HornungV (2013) Of inflammasomes and pathogens -sensing of microbes by the inflammasome. EMBO Mol Med5: 814-826
CrossRef
Google scholar
|
[6] |
BauernfeindFG, HorvathG, StutzA, AlnemriES, MacDonaldK, SpeertD, Fernandes-AlnemriT, WuJ, MonksBG, FitzgeraldKA
CrossRef
Google scholar
|
[7] |
BauernfeindF, AblasserA, BartokE, KimS, Schmid-BurgkJ, CavlarT, HornungV (2011) Inflammasomes: current understanding and open questions. Cell Mol Life Sci68: 765-783
CrossRef
Google scholar
|
[8] |
BuntSK, ClementsVK, HansonEM, SinhaP, Ostrand-RosenbergS (2009) Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J Leukoc Biol85: 996-1004
CrossRef
Google scholar
|
[9] |
BurdetteD, HaskettA, PresserL, McRaeS, IqbalJ, WarisG (2012) Hepatitis C virus activates interleukin-1beta via caspase-1- inflammasome complex. J Gen Virol93: 235-246
CrossRef
Google scholar
|
[10] |
ChaveyC, BibeauF, Gourgou-BourgadeS, BurlinchonS, BoissiereF, LauneD, RoquesS, LazennecG (2007) Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res9: R15
CrossRef
Google scholar
|
[11] |
ChenGY, NunezG (2011) Inflammasomes in intestinal inflammation and cancer. Gastroenterology141: 1986-1999
CrossRef
Google scholar
|
[12] |
ChenGY, LiuM, WangF, BertinJ, NunezG (2011) A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol186: 7187-7194
CrossRef
Google scholar
|
[13] |
ChowMT, SceneayJ, PagetC, WongCS, DuretH, TschoppJ, MollerA, SmythMJ (2012) NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases. Cancer Res72: 5721-5732
CrossRef
Google scholar
|
[14] |
CoussensLM, ZitvogelL, PaluckaAK (2013) Neutralizing tumorpromoting chronic inflammation: a magic bullet? Science339: 286-291
CrossRef
Google scholar
|
[15] |
Di VirgilioF (2013) The therapeutic potential of modifying inflammasomes and NOD-Like receptors. Pharmacol Rev65: 872-905
CrossRef
Google scholar
|
[16] |
DinarelloCA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol27: 519-550
CrossRef
Google scholar
|
[17] |
DinarelloCA (2011) Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood117: 3720-3732
CrossRef
Google scholar
|
[18] |
DostertC, PetrilliV, Van BruggenR, SteeleC, MossmanBT, TschoppJ (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science320: 674-677
CrossRef
Google scholar
|
[19] |
DrexlerSK, BonsignoreL, MasinM, TardivelA, JackstadtR, HermekingH, SchneiderP, GrossO, TschoppJ, YazdiAS (2012) Tissue-speciflc opposing functions of the inflammasome adaptor ASC in the regulation of epithelial skin carcinogenesis. Proc Natl Acad Sci USA109: 18384-18389
CrossRef
Google scholar
|
[20] |
DunnJH, EllisLZ, FujitaM (2012) Inflammasomes as molecular mediators of inflammation and cancer: potential role in melanoma. Cancer Lett314: 24-33
CrossRef
Google scholar
|
[21] |
Dupaul-ChicoineJ, YeretssianG, DoironK, BergstromKS, McIntireCR, LeBlancPM, MeunierC, TurbideC, GrosP, BeaucheminN
CrossRef
Google scholar
|
[22] |
EisenbarthSC, FlavellRA (2009) Innate instruction of adaptive immunity revisited: the inflammasome. EMBO Mol Med1: 92-98
CrossRef
Google scholar
|
[23] |
ElinavE, StrowigT, KauAL, Henao-MejiaJ, ThaissCA, BoothCJ, PeaperDR, BertinJ, EisenbarthSC, GordonJI
CrossRef
Google scholar
|
[24] |
ElkabetsM, RibeiroVS, DinarelloCA, Ostrand-RosenbergS, Di SantoJP, ApteRN, VosshenrichCA (2010) IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol40: 3347-3357
CrossRef
Google scholar
|
[25] |
ElliottMR, ChekeniFB, TrampontPC, LazarowskiER, KadlA, WalkSF, ParkD, WoodsonRI, OstankovichM, SharmaP
CrossRef
Google scholar
|
[26] |
El-OmarEM, CarringtonM, ChowWH, McCollKE, BreamJH, YoungHA, HerreraJ, LissowskaJ, YuanCC, RothmanN
CrossRef
Google scholar
|
[27] |
Fernandes-AlnemriT, YuJW, DattaP, WuJ, AlnemriES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature458: 509-513
CrossRef
Google scholar
|
[28] |
Fernandes-AlnemriT, YuJW, JulianaC, SolorzanoL, KangS, WuJ, DattaP, McCormickM, HuangL, McDermottE
CrossRef
Google scholar
|
[29] |
FerroneC, DranoffG (2010) Dual roles for immunity in gastrointestinal cancers. J Clin Oncol28: 4045-4051
CrossRef
Google scholar
|
[30] |
FranchiL, NunezG (2012) Immunology. Orchestrating inflammasomes. Science337: 1299-1300
CrossRef
Google scholar
|
[31] |
FranchiL, AmerA, Body-MalapelM, KannegantiTD, OzorenN, JagirdarR, InoharaN, VandenabeeleP, BertinJ, CoyleA
CrossRef
Google scholar
|
[32] |
GhiringhelliF, ApetohL, TesniereA, AymericL, MaY, OrtizC, VermaelenK, PanaretakisT, MignotG, UllrichE
CrossRef
Google scholar
|
[33] |
GreenDR, KroemerG (2005) Pharmacological manipulation of cell death: clinical applications in sight? J Clin Invest115: 2610-2617
CrossRef
Google scholar
|
[34] |
GringhuisSI, KapteinTM, WeversBA, TheelenB, van der VlistM, BoekhoutT, GeijtenbeekTB (2012) Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1beta via a noncanonical caspase-8 inflammasome. Nat Immunol13: 246-254
CrossRef
Google scholar
|
[35] |
GrivennikovSI, GretenFR, KarinM (2010) Immunity, inflammation, and cancer. Cell140: 883-899
CrossRef
Google scholar
|
[36] |
HornungV, AblasserA, Charrel-DennisM, BauernfeindF, HorvathG, CaffreyDR, LatzE, FitzgeraldKA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature458: 514-518
CrossRef
Google scholar
|
[37] |
HuB, ElinavE, HuberS, BoothCJ, StrowigT, JinC, EisenbarthSC, FlavellRA (2010) Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci USA107: 21635-21640
CrossRef
Google scholar
|
[38] |
HuB, ElinavE, FlavellRA (2011) Inflammasome-mediated suppression of inflammation-induced colorectal cancer progression is mediated by direct regulation of epithelial cell proliferation. Cell Cycle10: 1936-1939
CrossRef
Google scholar
|
[39] |
IdzkoM, DichmannS, FerrariD, Di VirgilioF, la SalaA, GirolomoniG, PantherE, NorgauerJ (2002) Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2y receptors. Blood100: 925-932
CrossRef
Google scholar
|
[40] |
IyerSS, PulskensWP, SadlerJJ, ButterLM, TeskeGJ, UllandTK, EisenbarthSC, FlorquinS, FlavellRA, LeemansJC
CrossRef
Google scholar
|
[41] |
JeeCD, LeeHS, BaeSI, YangHK, LeeYM, RhoMS, KimWH (2005) Loss of caspase-1 gene expression in human gastric carcinomas and cell lines. Int J Oncol26: 1265-1271
|
[42] |
JinL, YuanRQ, FuchsA, YaoY, JosephA, SchwallR, SchnittSJ, GuidaA, HastingsHM, AndresJ
CrossRef
Google scholar
|
[43] |
JulianaC, Fernandes-AlnemriT, KangS, FariasA, QinF, AlnemriES (2012) Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem287: 36617-36622
CrossRef
Google scholar
|
[44] |
KanavyHE, GerstenblithMR (2011) Ultraviolet radiation and melanoma. Semin Cutan Med Surg30: 222-228
CrossRef
Google scholar
|
[45] |
KayagakiN, WarmingS, LamkanflM, Vande WalleL, LouieS, DongJ, NewtonK, QuY, LiuJ, HeldensS
CrossRef
Google scholar
|
[46] |
KimS, BauernfeindF, AblasserA, HartmannG, FitzgeraldKA, LatzE, HornungV (2010) Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. Eur J Immunol40: 1545-1551
CrossRef
Google scholar
|
[47] |
LamkanflM, DixitVM (2009) The inflammasomes. PLoS Pathog5: e1000510
CrossRef
Google scholar
|
[48] |
LiY, WangL, PappanL, Galliher-BeckleyA, ShiJ (2012) IL-1beta promotes stemness and invasiveness of colon cancer cells through Zeb1 activation. Mol Cancer11: 87
CrossRef
Google scholar
|
[49] |
LiuX, WangZ, YuJ, LeiG, WangS (2010) Three polymorphisms in interleukin-1beta gene and risk for breast cancer: a metaanalysis. Breast Cancer Res Treat124: 821-825
CrossRef
Google scholar
|
[50] |
LiuW, LuoY, DunnJH, NorrisDA, DinarelloCA, FujitaM (2013) Dual role of apoptosis-associated speck-like protein containing a CARD (ASC) in tumorigenesis of human melanoma. J Invest Dermatol133: 518-527
CrossRef
Google scholar
|
[51] |
LocherC, ConfortiR, AymericL, MaY, YamazakiT, RusakiewiczS, TesniereA, GhiringhelliF, ApetohL, MorelY
CrossRef
Google scholar
|
[52] |
MachadoJC, PharoahP, SousaS, CarvalhoR, OliveiraC, FigueiredoC, AmorimA, SerucaR, CaldasC, CarneiroF
CrossRef
Google scholar
|
[53] |
MariathasanS, NewtonK, MonackDM, VucicD, FrenchDM, LeeWP, Roose-GirmaM, EricksonS, DixitVM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature430: 213-218
CrossRef
Google scholar
|
[54] |
MariathasanS, WeissDS, NewtonK, McBrideJ, O’RourkeK, Roose-GirmaM, LeeWP, WeinrauchY, MonackDM, DixitVM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature440: 228-232
CrossRef
Google scholar
|
[55] |
MartinonF, PetrilliV, MayorA, TardivelA, TschoppJ (2006) Goutassociated uric acid crystals activate the NALP3 inflammasome. Nature440: 237-241
CrossRef
Google scholar
|
[56] |
MartinsI, TesniereA, KeppO, MichaudM, SchlemmerF, SenovillaL, SerorC, MetivierD, PerfettiniJL, ZitvogelL
CrossRef
Google scholar
|
[57] |
MattarolloSR, LoiS, DuretH, MaY, ZitvogelL, SmythMJ (2011) Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res71: 4809-4820
CrossRef
Google scholar
|
[58] |
McNamaraD, El-OmarE (2008) Helicobacter pylori infection and the pathogenesis of gastric cancer: a paradigm for host-bacterial interactions. Dig Liver Dis40: 504-509
CrossRef
Google scholar
|
[59] |
MiaoEA, Alpuche-ArandaCM, DorsM, ClarkAE, BaderMW, MillerSI, AderemA (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol7: 569-575
CrossRef
Google scholar
|
[60] |
MiaoEA, ErnstRK, DorsM, MaoDP, AderemA (2008) Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc Natl Acad Sci USA105: 2562-2567
CrossRef
Google scholar
|
[61] |
MiaoEA, RajanJV, AderemA (2011) Caspase-1-induced pyroptotic cell death. Immunol Rev243: 206-214
CrossRef
Google scholar
|
[62] |
NegashAA, RamosHJ, CrochetN, LauDT, DoehleB, PapicN, DelkerDA, JoJ, BertolettiA, HagedornCH
CrossRef
Google scholar
|
[63] |
NormandS, Delanoye-CrespinA, BressenotA, HuotL, GrandjeanT, Peyrin-BirouletL, LemoineY, HotD, ChamaillardM (2011) Nodlike receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc Natl Acad Sci USA108: 9601-9606
CrossRef
Google scholar
|
[64] |
OkamotoM, LiuW, LuoY, TanakaA, CaiX, NorrisDA, DinarelloCA, FujitaM (2010) Constitutively active inflammasome in human melanoma cells mediating autoinflammation via caspase-1 processing and secretion of interleukin-1beta. J Biol Chem285: 6477-6488
CrossRef
Google scholar
|
[65] |
PantschenkoAG, PushkarI, AndersonKH, WangY, MillerLJ, KurtzmanSH, BarrowsG, KreutzerDL (2003) The interleukin-1 family of cytokines and receptors in human breast cancer: implications for tumor progression. Int J Oncol23: 269-284
|
[66] |
RamanD, BaugherPJ, ThuYM, RichmondA (2007) Role of chemokines in tumor growth. Cancer Lett256: 137-165
CrossRef
Google scholar
|
[67] |
RathinamVA, JiangZ, WaggonerSN, SharmaS, ColeLE, WaggonerL, VanajaSK, MonksBG, GanesanS, LatzE
CrossRef
Google scholar
|
[68] |
ReedJR, LeonRP, HallMK, SchwertfegerKL (2009) Interleukin-1beta and flbroblast growth factor receptor 1 cooperate to induce cyclooxygenase-2 during early mammary tumourigenesis. Breast Cancer Res11:R21
CrossRef
Google scholar
|
[69] |
SagulenkoV, ThygesenSJ, SesterDP, IdrisA, CridlandJA, VajjhalaPR, RobertsTL, SchroderK, VinceJE, HillJM
CrossRef
Google scholar
|
[70] |
SakuraiT, HeG, MatsuzawaA, YuGY, MaedaS, HardimanG, KarinM (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell14: 156-165
CrossRef
Google scholar
|
[71] |
SalcedoR, WorschechA, CardoneM, JonesY, GyulaiZ, DaiRM, WangE, MaW, HainesD, O’HUiginC
CrossRef
Google scholar
|
[72] |
SchroderK, TschoppJ (2010) The inflammasomes. Cell140: 821-832
CrossRef
Google scholar
|
[73] |
SchroderK, SagulenkoV, ZamoshnikovaA, RichardsAA, CridlandJA, IrvineKM, StaceyKJ, SweetMJ (2012) Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction. Immunobiology217: 1325-1329
CrossRef
Google scholar
|
[74] |
SevkoA, UmanskyV (2013) Myeloid-derived suppressor cells interact with tumors in terms of myelopoiesis, tumorigenesis and immunosuppression: thick as thieves. J Cancer4: 3-11
CrossRef
Google scholar
|
[75] |
SiegmundB, LehrHA, FantuzziG, DinarelloCA (2001) IL-1 betaconverting enzyme (caspase-1) in intestinal inflammation. Proc Natl Acad Sci USA98: 13249-13254
CrossRef
Google scholar
|
[76] |
SnoussiK, StrosbergAD, BouaouinaN, Ben AhmedS, ChouchaneL (2005) Genetic variation in pro-inflammatory cytokines (interleukin-1beta, interleukin-1alpha and interleukin-6) associated with the aggressive forms, survival, and relapse prediction of breast carcinoma. Eur Cytokine Netw16: 253-260
|
[77] |
SrivastavaS, SalimN, RobertsonMJ (2010) Interleukin-18: biology and role in the immunotherapy of cancer. Curr Med Chem17: 3353-3357
CrossRef
Google scholar
|
[78] |
StehlikC, FiorentinoL, DorfleutnerA, BrueyJM, ArizaEM, SagaraJ, ReedJC (2002) The PAAD/PYRIN-family protein ASC is a dual regulator of a conserved step in nuclear factor kappaB activation pathways. J Exp Med196: 1605-1615
CrossRef
Google scholar
|
[79] |
SuzukiT, FranchiL, TomaC, AshidaH, OgawaM, YoshikawaY, MimuroH, InoharaN, SasakawaC, NunezG (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog3: e111
CrossRef
Google scholar
|
[80] |
TermeM, UllrichE, AymericL, MeinhardtK, DesboisM, DelahayeN, ViaudS, RyffelB, YagitaH, KaplanskiG
CrossRef
Google scholar
|
[81] |
TuS, BhagatG, CuiG, TakaishiS, Kurt-JonesEA, RickmanB, BetzKS, Penz-OesterreicherM, BjorkdahlO, FoxJG
CrossRef
Google scholar
|
[82] |
van DeventerHW, BurgentsJE, WuQP, WoodfordRM, BrickeyWJ, AllenIC, McElvania-TekippeE, SerodyJS, TingJP (2010) The inflammasome component NLRP3 impairs antitumor vaccine by enhancing the accumulation of tumor-associated myeloid-derived suppressor cells. Cancer Res70: 10161-10169
CrossRef
Google scholar
|
[83] |
WangP, XiaHH, ZhangJY, DaiLP, XuXQ, WangKJ (2007) Association of interleukin-1 gene polymorphisms with gastric cancer: a meta-analysis. Int J Cancer120: 552-562
CrossRef
Google scholar
|
[84] |
ZakiMH, BoydKL, VogelP, KastanMB, LamkanflM, KannegantiTD (2010a) The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity32: 379-391
CrossRef
Google scholar
|
[85] |
ZakiMH, VogelP, Body-MalapelM, LamkanflM, KannegantiTD (2010b) IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol185: 4912-4920
CrossRef
Google scholar
|
[86] |
ZakiMH, VogelP, MalireddiRK, Body-MalapelM, AnandPK, BertinJ, GreenDR, LamkanflM, KannegantiTD (2011) The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell20: 649-660
CrossRef
Google scholar
|
[87] |
ZamboniDS, KobayashiKS, KohlsdorfT, OguraY, LongEM, VanceRE, KuidaK, MariathasanS, DixitVM, FlavellRA
CrossRef
Google scholar
|
[88] |
ZhuY, ZhuM, LanceP (2012) IL1beta-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells. Exp Cell Res318: 2520-2530
CrossRef
Google scholar
|
[89] |
ZitvogelL, KeppO, GalluzziL, KroemerG (2012) Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol13: 343-351
CrossRef
Google scholar
|
/
〈 | 〉 |