Two antibodies show broad, synergistic neutralization against SARS-CoV-2 variants by inducing conformational change within the RBD

  • Hui Sun 1,2,3 ,
  • Tingting Deng 1,2,3 ,
  • Yali Zhang 1,2,3,4 ,
  • Yanling Lin 1,2,3 ,
  • Yanan Jiang 1,2,3 ,
  • Yichao Jiang 1,2,3 ,
  • Yang Huang 1,2,3 ,
  • Shuo Song 5,6 ,
  • Lingyan Cui 1,2,3 ,
  • Tingting Li 1,2,3,4 ,
  • Hualong Xiong 1,2,3,4 ,
  • Miaolin Lan 1,2,3 ,
  • Liqin Liu 1,2,3 ,
  • Yu Li 1,2,3 ,
  • Qianjiao Fang 1,2,3 ,
  • Kunyu Yu 1,2,3 ,
  • Wenling Jiang 1,2,3 ,
  • Lizhi Zhou 1,2,3,4 ,
  • Yuqiong Que 1,2,3,4 ,
  • Tianying Zhang 1,2,3,4 ,
  • Quan Yuan 1,2,3,4 ,
  • Tong Cheng 1,2,3,4 ,
  • Zheng Zhang 5,6 ,
  • Hai Yu 1,2,3,4 ,
  • Jun Zhang 1,2,3,4 ,
  • Wenxin Luo 1,2,3,4 ,
  • Shaowei Li , 1,2,3,4 ,
  • Qingbing Zheng , 1,2,3,4 ,
  • Ying Gu , 1,2,3,4 ,
  • Ningshao Xia , 1,2,3,4,7
Expand
  • 1. State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
  • 2. National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
  • 3. State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China
  • 4. Xiang An Biomedicine Laboratory, Xiamen 361102, China
  • 5. Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
  • 6. The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
  • 7. Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen 361102, China
shaowei@xmu.edu.cn
abing0811@xmu.edu.cn
guying@xmu.edu.cn
nsxia@xmu.edu.cn

Received date: 14 Feb 2023

Accepted date: 14 Jun 2023

Published date: 15 Feb 2024

Copyright

2023 The Author(s) 2023. Published by Oxford University Press on behalf of Higher Education Press.

Abstract

Continual evolution of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus has allowed for its gradual evasion of neutralizing antibodies (nAbs) produced in response to natural infection or vaccination. The rapid nature of these changes has incited a need for the development of superior broad nAbs (bnAbs) and/or the rational design of an antibody cocktail that can protect against the mutated virus strain. Here, we report two angiotensin-converting enzyme 2 competing nAbs—8H12 and 3E2—with synergistic neutralization but evaded by some Omicron subvariants. Cryo-electron microscopy reveals the two nAbs synergistic neutralizing virus through a rigorous pairing permitted by rearrangement of the 472–489 loop in the receptor-binding domain to avoid steric clashing. Bispecific antibodies based on these two nAbs tremendously extend the neutralizing breadth and restore neutralization against recent variants including currently dominant XBB.1.5. Together, these findings expand our understanding of the potential strategies for the neutralization of SARS-CoV-2 variants toward the design of broad-acting antibody therapeutics and vaccines.

Cite this article

Hui Sun , Tingting Deng , Yali Zhang , Yanling Lin , Yanan Jiang , Yichao Jiang , Yang Huang , Shuo Song , Lingyan Cui , Tingting Li , Hualong Xiong , Miaolin Lan , Liqin Liu , Yu Li , Qianjiao Fang , Kunyu Yu , Wenling Jiang , Lizhi Zhou , Yuqiong Que , Tianying Zhang , Quan Yuan , Tong Cheng , Zheng Zhang , Hai Yu , Jun Zhang , Wenxin Luo , Shaowei Li , Qingbing Zheng , Ying Gu , Ningshao Xia . Two antibodies show broad, synergistic neutralization against SARS-CoV-2 variants by inducing conformational change within the RBD[J]. Protein & Cell, 2024 , 15(2) : 121 -134 . DOI: 10.1093/procel/pwad040

1
Adams PD, Afonine PV, Bunkóczi G et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 2010;66:213–21.

DOI

2
Barnes CO, Jette CA, Abernathy ME et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 2020;588:682–87.

DOI

3
Cao Y, Wang J, Jian F et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022a;602:657–63.

DOI

4
Cao Y, Yisimayi A, Jian F et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 2022b;608:593–602.

DOI

5
Cao Y, Jian F, Wang J et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature 2023;614:521–29.

DOI

6
Carter P, Rajpal A. Designing antibodies as therapeutics. Cell 2022;185:2789–805.

DOI

7
Cavazzoni, P. FDA Statement: Coronavirus (COVID-19) Update: FDA Limits Use of Certain Monoclonal Antibodies to Treat COVID-19 Due to the Omicron Variant. 2022. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-limits-use-certain-monoclonal-antibodies-treat-covid-19-due-omicron

8
Cele S, Jackson L, Khoury DS et al.; NGS-SA. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature 2022;602:654–56.

DOI

9
Chang L, Hou W, Zhao L et al. The prevalence of antibodies to SARS-CoV-2 among blood donors in China. Nat Commun 2021;12:1383.

DOI

10
Chen VB, Arendall WB, Headd JJ et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2010;66:12–21.

DOI

11
Cocherie T, Zafilaza K, Leducq V et al. Epidemiology and characteristics of SARS-CoV-2 variants of concern: the impacts of the spike mutations. Microorganisms 2022;11:30.

DOI

12
Copin R, Baum A, Wloga E et al. The monoclonal antibody combination REGEN-COV protects against SARS-CoV-2 mutational escape in preclinical and human studies. Cell 2021;184:3949–61.e11.

DOI

13
Crowe JE Jr. Human antibodies for viral infections. Annu Rev Immunol 2022;40:349–86.

DOI

14
Desingu PA, Nagarajan K. The emergence of Omicron lineages BA.4 and BA.5, and the global spreading trend. J Med Virol 2022;94:5077–79.

DOI

15
Dong J, Zost SJ, Greaney AJ et al. Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nat Microbiol 2021;6:1233–44.

DOI

16
Du W, Hurdiss DL, Drabek D et al. An ACE2-blocking antibody confers broad neutralization and protection against Omicron and other SARS-CoV-2 variants of concern. Sci Immunol 2022;7:eabp9312.

DOI

17
Dussupt V, Sankhala RS, Mendez-Rivera L et al. Low-dose in vivo protection and neutralization across SARS-CoV-2 variants by monoclonal antibody combinations. Nat Immunol 2021;22:1503–14.

DOI

18
Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004;60:2126–32.

DOI

19
Goddard TD, Huang CC, Meng EC et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci 2018;27:14–25.

DOI

20
Gruell H, Vanshylla K, Tober-Lau P et al. Neutralisation sensitivity of the SARS-CoV-2 Omicron BA.2.75 sublineage. Lancet Infect Dis 2022;22:1422–23.

DOI

21
Iketani S, Liu L, Guo Y et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 2022;604:553–6.

DOI

22
Ju B, Zhang Q, Ge J et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 2020;584:115–9.

DOI

23
Ju B, Zheng Q, Guo H et al. Immune escape by SARS-CoV-2 Omicron variant and structural basis of its effective neutralization by a broad neutralizing human antibody VacW-209. Cell Res 2022;32:491–4.

DOI

24
Ku Z, Xie X, Lin J et al. Engineering SARS-CoV-2 specific cocktail antibodies into a bispecific format improves neutralizing potency and breadth. Nat Commun 2022;13:5552.

DOI

25
Kucukelbir A, Sigworth FJ, Tagare HD. Quantifying the local resolution of cryo-EM density maps. Nat Methods 2014;11:63–5.

DOI

26
Liu H, Wu NC, Yuan M et al. Cross-neutralization of a SARS-CoV-2 antibody to a functionally conserved site is mediated by avidity. Immunity 2020;53:1272–80.e5.

DOI

27
Li T, Han X, Gu C et al. Potent SARS-CoV-2 neutralizing antibodies with protective efficacy against newly emerged mutational variants. Nat Commun 2021a;12:6304.

28
Li T, Xue W, Zheng Q et al. Cross-neutralizing antibodies bind a SARS-CoV-2 cryptic site and resist circulating variants. Nat Commun 2021b;12:5652.

DOI

29
Li Z, Li S, Zhang G et al. An engineered bispecific human monoclonal antibody against SARS-CoV-2. Nat Immunol 2022;23:423–30.

DOI

30
Martinez DR, Schäfer A, Gobeil S et al. A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Sci Transl Med 2022;14:eabj7125.

DOI

31
Miersch S, Sharma N, Saberianfar R et al. Ultrapotent and broad neutralization of SARS-CoV-2 variants by modular, tetravalent, bi-paratopic antibodies. Cell Rep 2022;39:110905.

DOI

32
Miller J, Hachmann NP, Collier AY et al. Substantial neutralization escape by SARS-CoV-2 Omicron variants BQ.1.1 and XBB.1. N Engl J Med 2023;388:662–4.

DOI

33
Pettersen EF, Goddard TD, Huang CC et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–12.

DOI

34
Pettersen EF, Goddard TD, Huang CC et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 2021;30:70–82.

DOI

35
Pinto D, Park Y-J, Beltramello M et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 2020;583:290–5.

DOI

36
Planas D, Bruel T, Staropoli I et al. Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies. Nat Commun 2023;14:824.

DOI

37
Punjani A, Rubinstein JL, Fleet DJ et al. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 2017;14:290–6.

DOI

38
Qu P, Faraone JN, Evans JP et al. Enhanced evasion of neutralizing antibody response by Omicron XBB.1.5, CH.1.1 and CA.3.1 Variants. Cell Rep 2023a;42(5):112433.

DOI

39
Qu P, Evans JP, Faraone JN et al. Enhanced neutralization resistance of SARS-CoV-2 Omicron subvariants BQ.1, BQ.1.1, BA.4.6, BF.7, and BA.2.75.2. Cell Host Microbe 2023b;31:9–17.e3.

DOI

40
Rappazzo CG, Tse LV, Kaku CI et al. Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science 2021;371:823–9.

DOI

41
Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 2014;42:W320–24.

DOI

42
Scheres SH, Chen S. Prevention of overfitting in cryo-EM structure determination. Nat Methods 2012;9:853–4.

DOI

43
Sheward DJ, Kim C, Fischbach J et al. Evasion of neutralising antibodies by Omicron sublineage BA.2.75. Lancet Infect Dis 2022;22:1421–2.

DOI

44
Starr TN, Czudnochowski N, Liu Z et al. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature 2021;597:97–102.

DOI

45
Tegally H, Moir M, Everatt J et al.; NGS-SA Consortium. Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa. Nat Med 2022;28:1785–90.

DOI

46
Tortorici MA, Beltramello M, Lempp FA et al. Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science 2020;370: 950–7.

DOI

47
Tortorici MA, Czudnochowski N, Starr TN et al. Broad sarbecovirus neutralization by a human monoclonal antibody. Nature 2021;597:103–8.

DOI

48
Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A et al. Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell 2022;185:2422–33.e13.

DOI

49
Uraki R, Ito M, Kiso M et al. Antiviral and bivalent vaccine efficacy against an Omicron XBB.1.5 isolate. Lancet Infect Dis 2023;23:402–403.

DOI

50
Wang Q, Iketani S, Li Z et al. Antigenic characterization of the SARS-CoV-2 Omicron subvariant BA.2.75. Cell Host Microbe 2022.

DOI

51
Wang Q, Iketani S, Li Z et al. Antigenic characterization of the SARS-CoV-2 Omicron subvariant BA.2.75. Cell Host Microbe 2022a;30:1512–17.e4.

DOI

52
Wang Q, Guo Y, Iketani S et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature 2022b;608:603–8.

DOI

53
Wang Y, Zhang X, Ma Y et al. Combating the SARS-CoV-2 Omicron (BA.1) and BA.2 with potent bispecific antibodies engineered from non-Omicron neutralizing antibodies. Cell Discov 2022c;8:104.

DOI

54
Wang S, Sun H, Zhang Y et al. Three SARS-CoV-2 antibodies provide broad and synergistic neutralization against variants of concern, including Omicron. Cell Rep 2022d;39:110862.

DOI

55
Wang Q, Iketani S, Li Z et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 2023;186:279–86.e8.

DOI

56
Westendorf K, Žentelis S, Wang L et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Rep 2022;39:110812.

DOI

57
WHO. Tracking SARS-CoV-2 Variants. 2022. https://www.who.int/activities/tracking-SARS-CoV-2-variants

58
WHO. WHO Coronavirus Disease (COVID-19) Dashboard. 2023 https://covid19.who.int/

59
Wrapp D, Wang N, Corbett KS et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260–63.

DOI

60
Wu NC, Yuan M, Bangaru S et al. A natural mutation between SARS-CoV-2 and SARS-CoV determines neutralization by a cross-reactive antibody. PLoS Pathog 2020;16:e1009089.

DOI

61
Xiong HL, Wu Y-T, Cao J-L et al. Robust neutralization assay based on SARS-CoV-2 S-protein-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressing BHK21 cells. Emerg Microbes Infect 2020;9:2105–13.

DOI

62
Xiong H, Sun H, Wang S et al. The neutralizing breadth of antibodies targeting diverse conserved epitopes between SARS-CoV and SARS-CoV-2. Proc Natl Acad Sci U S A 2022;119:e2204256119.

DOI

63
Yue C, Song W, Wang L et al. ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5. Lancet Infect Dis 2023;23:278–80.

DOI

64
Zhang K. Gctf: real-time CTF determination and correction. J Struct Biol 2016;193:1–12.

DOI

65
Zhang C, Wang Y, Zhu Y et al. Development and structural basis of a two-MAb cocktail for treating SARS-CoV-2 infections. Nat Commun 2021;12:264.

DOI

66
Zhang Y, Wei M, Wu Y et al. Cross-species tropism and antigenic landscapes of circulating SARS-CoV-2 variants. Cell Rep 2022;0558:11.

DOI

67
Zheng SQ, Palovcak E, Armache J-P et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 2017;14:331–2.

DOI

68
Zheng Q, Zhu R, Yin Z et al. Structural basis for the synergistic neutralization of coxsackievirus B1 by a triple-antibody cocktail. Cell Host Microbe 2022;30:1279–94.e6.

DOI

69
Zhu A, Wei P, Man M et al. Antigenic characterization of SARS-CoV-2 Omicron subvariants XBB.1.5, BQ.1, BQ.1.1, BF.7 and BA.2.75.2. Signal Transduct Target Ther 2023;8:125.

DOI

70
Zost SJ, Vogt MR. A counterintuitive antibody cocktail disrupts coxsackievirus. Cell Host Microbe 2022;30:1194–5.

DOI

Outlines

/