Two antibodies show broad, synergistic neutralization against SARS-CoV-2 variants by inducing conformational change within the RBD

Hui Sun, Tingting Deng, Yali Zhang, Yanling Lin, Yanan Jiang, Yichao Jiang, Yang Huang, Shuo Song, Lingyan Cui, Tingting Li, Hualong Xiong, Miaolin Lan, Liqin Liu, Yu Li, Qianjiao Fang, Kunyu Yu, Wenling Jiang, Lizhi Zhou, Yuqiong Que, Tianying Zhang, Quan Yuan, Tong Cheng, Zheng Zhang, Hai Yu, Jun Zhang, Wenxin Luo, Shaowei Li, Qingbing Zheng, Ying Gu, Ningshao Xia

PDF(14320 KB)
PDF(14320 KB)
Protein Cell ›› 2024, Vol. 15 ›› Issue (2) : 121-134. DOI: 10.1093/procel/pwad040
RESEARCH ARTICLE

Two antibodies show broad, synergistic neutralization against SARS-CoV-2 variants by inducing conformational change within the RBD

Author information +
History +

Abstract

Continual evolution of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus has allowed for its gradual evasion of neutralizing antibodies (nAbs) produced in response to natural infection or vaccination. The rapid nature of these changes has incited a need for the development of superior broad nAbs (bnAbs) and/or the rational design of an antibody cocktail that can protect against the mutated virus strain. Here, we report two angiotensin-converting enzyme 2 competing nAbs—8H12 and 3E2—with synergistic neutralization but evaded by some Omicron subvariants. Cryo-electron microscopy reveals the two nAbs synergistic neutralizing virus through a rigorous pairing permitted by rearrangement of the 472–489 loop in the receptor-binding domain to avoid steric clashing. Bispecific antibodies based on these two nAbs tremendously extend the neutralizing breadth and restore neutralization against recent variants including currently dominant XBB.1.5. Together, these findings expand our understanding of the potential strategies for the neutralization of SARS-CoV-2 variants toward the design of broad-acting antibody therapeutics and vaccines.

Keywords

SARS-CoV-2 / broad neutralizing antibody / rearrangement / synergistic neutralization

Cite this article

Download citation ▾
Hui Sun, Tingting Deng, Yali Zhang, Yanling Lin, Yanan Jiang, Yichao Jiang, Yang Huang, Shuo Song, Lingyan Cui, Tingting Li, Hualong Xiong, Miaolin Lan, Liqin Liu, Yu Li, Qianjiao Fang, Kunyu Yu, Wenling Jiang, Lizhi Zhou, Yuqiong Que, Tianying Zhang, Quan Yuan, Tong Cheng, Zheng Zhang, Hai Yu, Jun Zhang, Wenxin Luo, Shaowei Li, Qingbing Zheng, Ying Gu, Ningshao Xia. Two antibodies show broad, synergistic neutralization against SARS-CoV-2 variants by inducing conformational change within the RBD. Protein Cell, 2024, 15(2): 121‒134 https://doi.org/10.1093/procel/pwad040

References

[1]
Adams PD, Afonine PV, Bunkóczi G et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 2010;66:213–21.
CrossRef Google scholar
[2]
Barnes CO, Jette CA, Abernathy ME et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 2020;588:682–87.
CrossRef Google scholar
[3]
Cao Y, Wang J, Jian F et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022a;602:657–63.
CrossRef Google scholar
[4]
Cao Y, Yisimayi A, Jian F et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 2022b;608:593–602.
CrossRef Google scholar
[5]
Cao Y, Jian F, Wang J et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature 2023;614:521–29.
CrossRef Google scholar
[6]
Carter P, Rajpal A. Designing antibodies as therapeutics. Cell 2022;185:2789–805.
CrossRef Google scholar
[7]
Cavazzoni, P. FDA Statement: Coronavirus (COVID-19) Update: FDA Limits Use of Certain Monoclonal Antibodies to Treat COVID-19 Due to the Omicron Variant. 2022. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-limits-use-certain-monoclonal-antibodies-treat-covid-19-due-omicron
[8]
Cele S, Jackson L, Khoury DS et al.; NGS-SA. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature 2022;602:654–56.
CrossRef Google scholar
[9]
Chang L, Hou W, Zhao L et al. The prevalence of antibodies to SARS-CoV-2 among blood donors in China. Nat Commun 2021;12:1383.
CrossRef Google scholar
[10]
Chen VB, Arendall WB, Headd JJ et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2010;66:12–21.
CrossRef Google scholar
[11]
Cocherie T, Zafilaza K, Leducq V et al. Epidemiology and characteristics of SARS-CoV-2 variants of concern: the impacts of the spike mutations. Microorganisms 2022;11:30.
CrossRef Google scholar
[12]
Copin R, Baum A, Wloga E et al. The monoclonal antibody combination REGEN-COV protects against SARS-CoV-2 mutational escape in preclinical and human studies. Cell 2021;184:3949–61.e11.
CrossRef Google scholar
[13]
Crowe JE Jr. Human antibodies for viral infections. Annu Rev Immunol 2022;40:349–86.
CrossRef Google scholar
[14]
Desingu PA, Nagarajan K. The emergence of Omicron lineages BA.4 and BA.5, and the global spreading trend. J Med Virol 2022;94:5077–79.
CrossRef Google scholar
[15]
Dong J, Zost SJ, Greaney AJ et al. Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nat Microbiol 2021;6:1233–44.
CrossRef Google scholar
[16]
Du W, Hurdiss DL, Drabek D et al. An ACE2-blocking antibody confers broad neutralization and protection against Omicron and other SARS-CoV-2 variants of concern. Sci Immunol 2022;7:eabp9312.
CrossRef Google scholar
[17]
Dussupt V, Sankhala RS, Mendez-Rivera L et al. Low-dose in vivo protection and neutralization across SARS-CoV-2 variants by monoclonal antibody combinations. Nat Immunol 2021;22:1503–14.
CrossRef Google scholar
[18]
Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004;60:2126–32.
CrossRef Google scholar
[19]
Goddard TD, Huang CC, Meng EC et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci 2018;27:14–25.
CrossRef Google scholar
[20]
Gruell H, Vanshylla K, Tober-Lau P et al. Neutralisation sensitivity of the SARS-CoV-2 Omicron BA.2.75 sublineage. Lancet Infect Dis 2022;22:1422–23.
CrossRef Google scholar
[21]
Iketani S, Liu L, Guo Y et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 2022;604:553–6.
CrossRef Google scholar
[22]
Ju B, Zhang Q, Ge J et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 2020;584:115–9.
CrossRef Google scholar
[23]
Ju B, Zheng Q, Guo H et al. Immune escape by SARS-CoV-2 Omicron variant and structural basis of its effective neutralization by a broad neutralizing human antibody VacW-209. Cell Res 2022;32:491–4.
CrossRef Google scholar
[24]
Ku Z, Xie X, Lin J et al. Engineering SARS-CoV-2 specific cocktail antibodies into a bispecific format improves neutralizing potency and breadth. Nat Commun 2022;13:5552.
CrossRef Google scholar
[25]
Kucukelbir A, Sigworth FJ, Tagare HD. Quantifying the local resolution of cryo-EM density maps. Nat Methods 2014;11:63–5.
CrossRef Google scholar
[26]
Liu H, Wu NC, Yuan M et al. Cross-neutralization of a SARS-CoV-2 antibody to a functionally conserved site is mediated by avidity. Immunity 2020;53:1272–80.e5.
CrossRef Google scholar
[27]
Li T, Han X, Gu C et al. Potent SARS-CoV-2 neutralizing antibodies with protective efficacy against newly emerged mutational variants. Nat Commun 2021a;12:6304.
[28]
Li T, Xue W, Zheng Q et al. Cross-neutralizing antibodies bind a SARS-CoV-2 cryptic site and resist circulating variants. Nat Commun 2021b;12:5652.
CrossRef Google scholar
[29]
Li Z, Li S, Zhang G et al. An engineered bispecific human monoclonal antibody against SARS-CoV-2. Nat Immunol 2022;23:423–30.
CrossRef Google scholar
[30]
Martinez DR, Schäfer A, Gobeil S et al. A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Sci Transl Med 2022;14:eabj7125.
CrossRef Google scholar
[31]
Miersch S, Sharma N, Saberianfar R et al. Ultrapotent and broad neutralization of SARS-CoV-2 variants by modular, tetravalent, bi-paratopic antibodies. Cell Rep 2022;39:110905.
CrossRef Google scholar
[32]
Miller J, Hachmann NP, Collier AY et al. Substantial neutralization escape by SARS-CoV-2 Omicron variants BQ.1.1 and XBB.1. N Engl J Med 2023;388:662–4.
CrossRef Google scholar
[33]
Pettersen EF, Goddard TD, Huang CC et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–12.
CrossRef Google scholar
[34]
Pettersen EF, Goddard TD, Huang CC et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci 2021;30:70–82.
CrossRef Google scholar
[35]
Pinto D, Park Y-J, Beltramello M et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 2020;583:290–5.
CrossRef Google scholar
[36]
Planas D, Bruel T, Staropoli I et al. Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies. Nat Commun 2023;14:824.
CrossRef Google scholar
[37]
Punjani A, Rubinstein JL, Fleet DJ et al. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 2017;14:290–6.
CrossRef Google scholar
[38]
Qu P, Faraone JN, Evans JP et al. Enhanced evasion of neutralizing antibody response by Omicron XBB.1.5, CH.1.1 and CA.3.1 Variants. Cell Rep 2023a;42(5):112433.
CrossRef Google scholar
[39]
Qu P, Evans JP, Faraone JN et al. Enhanced neutralization resistance of SARS-CoV-2 Omicron subvariants BQ.1, BQ.1.1, BA.4.6, BF.7, and BA.2.75.2. Cell Host Microbe 2023b;31:9–17.e3.
CrossRef Google scholar
[40]
Rappazzo CG, Tse LV, Kaku CI et al. Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science 2021;371:823–9.
CrossRef Google scholar
[41]
Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 2014;42:W320–24.
CrossRef Google scholar
[42]
Scheres SH, Chen S. Prevention of overfitting in cryo-EM structure determination. Nat Methods 2012;9:853–4.
CrossRef Google scholar
[43]
Sheward DJ, Kim C, Fischbach J et al. Evasion of neutralising antibodies by Omicron sublineage BA.2.75. Lancet Infect Dis 2022;22:1421–2.
CrossRef Google scholar
[44]
Starr TN, Czudnochowski N, Liu Z et al. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature 2021;597:97–102.
CrossRef Google scholar
[45]
Tegally H, Moir M, Everatt J et al.; NGS-SA Consortium. Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa. Nat Med 2022;28:1785–90.
CrossRef Google scholar
[46]
Tortorici MA, Beltramello M, Lempp FA et al. Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science 2020;370: 950–7.
CrossRef Google scholar
[47]
Tortorici MA, Czudnochowski N, Starr TN et al. Broad sarbecovirus neutralization by a human monoclonal antibody. Nature 2021;597:103–8.
CrossRef Google scholar
[48]
Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A et al. Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell 2022;185:2422–33.e13.
CrossRef Google scholar
[49]
Uraki R, Ito M, Kiso M et al. Antiviral and bivalent vaccine efficacy against an Omicron XBB.1.5 isolate. Lancet Infect Dis 2023;23:402–403.
CrossRef Google scholar
[50]
Wang Q, Iketani S, Li Z et al. Antigenic characterization of the SARS-CoV-2 Omicron subvariant BA.2.75. Cell Host Microbe 2022.
CrossRef Google scholar
[51]
Wang Q, Iketani S, Li Z et al. Antigenic characterization of the SARS-CoV-2 Omicron subvariant BA.2.75. Cell Host Microbe 2022a;30:1512–17.e4.
CrossRef Google scholar
[52]
Wang Q, Guo Y, Iketani S et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature 2022b;608:603–8.
CrossRef Google scholar
[53]
Wang Y, Zhang X, Ma Y et al. Combating the SARS-CoV-2 Omicron (BA.1) and BA.2 with potent bispecific antibodies engineered from non-Omicron neutralizing antibodies. Cell Discov 2022c;8:104.
CrossRef Google scholar
[54]
Wang S, Sun H, Zhang Y et al. Three SARS-CoV-2 antibodies provide broad and synergistic neutralization against variants of concern, including Omicron. Cell Rep 2022d;39:110862.
CrossRef Google scholar
[55]
Wang Q, Iketani S, Li Z et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 2023;186:279–86.e8.
CrossRef Google scholar
[56]
Westendorf K, Žentelis S, Wang L et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Rep 2022;39:110812.
CrossRef Google scholar
[57]
WHO. Tracking SARS-CoV-2 Variants. 2022. https://www.who.int/activities/tracking-SARS-CoV-2-variants
[58]
WHO. WHO Coronavirus Disease (COVID-19) Dashboard. 2023 https://covid19.who.int/
[59]
Wrapp D, Wang N, Corbett KS et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260–63.
CrossRef Google scholar
[60]
Wu NC, Yuan M, Bangaru S et al. A natural mutation between SARS-CoV-2 and SARS-CoV determines neutralization by a cross-reactive antibody. PLoS Pathog 2020;16:e1009089.
CrossRef Google scholar
[61]
Xiong HL, Wu Y-T, Cao J-L et al. Robust neutralization assay based on SARS-CoV-2 S-protein-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressing BHK21 cells. Emerg Microbes Infect 2020;9:2105–13.
CrossRef Google scholar
[62]
Xiong H, Sun H, Wang S et al. The neutralizing breadth of antibodies targeting diverse conserved epitopes between SARS-CoV and SARS-CoV-2. Proc Natl Acad Sci U S A 2022;119:e2204256119.
CrossRef Google scholar
[63]
Yue C, Song W, Wang L et al. ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5. Lancet Infect Dis 2023;23:278–80.
CrossRef Google scholar
[64]
Zhang K. Gctf: real-time CTF determination and correction. J Struct Biol 2016;193:1–12.
CrossRef Google scholar
[65]
Zhang C, Wang Y, Zhu Y et al. Development and structural basis of a two-MAb cocktail for treating SARS-CoV-2 infections. Nat Commun 2021;12:264.
CrossRef Google scholar
[66]
Zhang Y, Wei M, Wu Y et al. Cross-species tropism and antigenic landscapes of circulating SARS-CoV-2 variants. Cell Rep 2022;0558:11.
CrossRef Google scholar
[67]
Zheng SQ, Palovcak E, Armache J-P et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 2017;14:331–2.
CrossRef Google scholar
[68]
Zheng Q, Zhu R, Yin Z et al. Structural basis for the synergistic neutralization of coxsackievirus B1 by a triple-antibody cocktail. Cell Host Microbe 2022;30:1279–94.e6.
CrossRef Google scholar
[69]
Zhu A, Wei P, Man M et al. Antigenic characterization of SARS-CoV-2 Omicron subvariants XBB.1.5, BQ.1, BQ.1.1, BF.7 and BA.2.75.2. Signal Transduct Target Ther 2023;8:125.
CrossRef Google scholar
[70]
Zost SJ, Vogt MR. A counterintuitive antibody cocktail disrupts coxsackievirus. Cell Host Microbe 2022;30:1194–5.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023. Published by Oxford University Press on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(14320 KB)

Accesses

Citations

Detail

Sections
Recommended

/