REVIEW

New pathogenic insights from large animal models of neurodegenerative diseases

  • Peng Yin ,
  • Shihua Li ,
  • Xiao-Jiang Li ,
  • Weili Yang
Expand
  • Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China

Received date: 07 Jan 2022

Accepted date: 23 Feb 2022

Published date: 15 Oct 2022

Copyright

2022 The Author(s)

Abstract

Animal models are essential for investigating the pathogenesis and developing the treatment of human diseases. Identification of genetic mutations responsible for neurodegenerative diseases has enabled the creation of a large number of small animal models that mimic genetic defects found in the affected individuals. Of the current animal models, rodents with genetic modifications are the most commonly used animal models and provided important insights into pathogenesis. However, most of genetically modified rodent models lack overt neurodegeneration, imposing challenges and obstacles in utilizing them to rigorously test the therapeutic effects on neurodegeneration. Recent studies that used CRISPR/Cas9-targeted large animal (pigs and monkeys) have uncovered important pathological events that resemble neurodegeneration in the patient’s brain but could not be produced in small animal models. Here we highlight the unique nature of large animals to model neurodegenerative diseases as well as the limitations and challenges in establishing large animal models of neurodegenerative diseases, with focus on Huntington disease, Amyotrophic lateral sclerosis, and Parkinson diseases. We also discuss how to use the important pathogenic insights from large animal models to make rodent models more capable of recapitulating important pathological features of neurodegenerative diseases.

Cite this article

Peng Yin , Shihua Li , Xiao-Jiang Li , Weili Yang . New pathogenic insights from large animal models of neurodegenerative diseases[J]. Protein & Cell, 2022 , 13(10) : 707 -720 . DOI: 10.1007/s13238-022-00912-8

1
Akundi RS , Huang Z , Eason J , Pandya JD , Zhi L , Cass WA , Sullivan PG , Bueler H (2011) Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS ONE 6: e16038

DOI

2
Arai T , Hasegawa M , Akiyama H , Ikeda K , Nonaka T , Mori H , Mann D , Tsuchiya K , Yoshida M , Hashizume Y et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351: 602- 611

DOI

3
Bai D , Yin P , Zhang Y , Sun F , Chen L , Lin L , Yan S , Li S , Li X-J (2021) Lack of association of somatic CAG repeat expansion with striatal neurodegeneration in HD knock-in animal models. Hum Mol Genet 30: 1497- 1508

DOI

4
Bakken TE , Miller JA , Ding S-L , Sunkin SM , Smith KA , Ng L , Szafer A , Dalley RA , Royall JJ , Lemon T et al (2016) A comprehensive transcriptional map of primate brain development. Nature 535: 367- 375

DOI

5
Bates GP , Dorsey R , Gusella JF , Hayden MR , Kay C , Leavitt BR , Nance M , Ross CA , Scahill RI , Wetzel R et al (2015) Huntington disease. Nat Rev Dis Prim 1: 15005

DOI

6
Baxa M , Hruska-Plochan M , Juhas S , Vodicka P , Pavlok A , Juhasova J , Miyanohara A , Nejime T , Klima J , Macakova M et al (2013) A transgenic minipig model of Huntington’s disease. J Huntingtons Dis 2: 47- 68

DOI

7
Bernard A , Lubbers LS , Tanis KQ , Luo R , Podtelezhnikov AA , Finney EM , McWhorter MME , Serikawa K , Lemon T , Morgan R et al (2012) Transcriptional architecture of the primate neocortex. Neuron 73: 1083- 1099

DOI

8
Chan KY , Jang MJ , Yoo BB , Greenbaum A , Ravi N , Wu W-L , Sánchez-Guardado L , Lois C , Mazmanian SK , Deverman BE et al (2017) Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 20: 1172- 1179

DOI

9
Chen B , Niu Y , Wang H , Wang K , Yang H , Li W (2020) Recent advances in CRISPR research. Protein Cell 11: 786- 791

DOI

10
Chen Z-Z , Wang J-Y , Kang Y , Yang Q-Y , Gu X-Y , Zhi D-L , Yan L , Long C-Z , Shen B , Niu Y-Y (2021) PINK1 gene mutation by pair truncated sgRNA/Cas9-D10A in cynomolgus monkeys. Zool Res 42: 469- 477

DOI

11
Chen-Plotkin AS , Lee VM-Y , Trojanowski JQ (2010) TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6: 211- 220

DOI

12
Chieppa MN , Perota A , Corona C , Grindatto A , Lagutina I , Vallino Costassa E , Lazzari G , Colleoni S , Duchi R , Lucchini F et al (2014) Modeling amyotrophic lateral sclerosis in hSOD1 transgenic swine. Neurodegener Dis 13: 246- 254

DOI

13
Corti O , Lesage S , Brice A (2011) What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev 91: 1161- 1218

DOI

14
Crook ZR , Housman D (2011) Huntington’s disease: can mice lead the way to treatment? Neuron 69: 423- 435

DOI

15
Cummins N , Gotz J (2018) Shedding light on mitophagy in neurons:what is the evidence for PINK1/Parkin mitophagy in vivo? Cell Mol Life Sci 75: 1151- 1162

DOI

16
Damier P , Hirsch EC , Agid Y , Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopaminecontaining neurons in Parkinson’s disease. Brain 122 (8): 1437- 1448

DOI

17
Darmanis S , Sloan SA , Zhang Y , Enge M , Caneda C , Shuer LM , Hayden Gephart MG , Barres BA , Quake SR (2015) A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci U S A 112: 7285- 7290

DOI

18
Davies SW , Turmaine M , Cozens BA , DiFiglia M , Sharp AH , Ross CA , Scherzinger E , Wanker EE , Mangiarini L , Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90: 537- 548

DOI

19
Dawson TM , Golde TE , Lagier-Tourenne C (2018) Animal models of neurodegenerative diseases. Nat Neurosci 21: 1370- 1379

DOI

20
Defelipe J (2011) The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front Neuroanat 5: 29

21
Deng HX , Siddique T (2000) Transgenic mouse models and human neurodegenerative disorders. Arch Neurol 57: 1695- 1702

DOI

22
Deng H , Wang P , Jankovic J (2018) The genetics of Parkinson disease. Ageing Res Rev 42: 72- 85

DOI

23
Dugger BN , Perl DP , Carlson GA (2017) Neurodegenerative disease transmission and transgenesis in mice. Cold Spring Harb Perspect Biol 9 (11): a023549

DOI

24
Farshim PP , Bates GP (2018) Mouse models of Huntington’s disease. Methods Mol Biol 1780: 97- 120

25
Ferraiuolo L , Kirby J , Grierson AJ , Sendtner M , Shaw PJ (2011) Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7: 616- 630

DOI

26
Forsberg K , Andersen PM , Marklund SL , Brännström T (2011) Glial nuclear aggregates of superoxide dismutase-1 are regularly present in patients with amyotrophic lateral sclerosis. Acta Neuropathol 121: 623- 634

DOI

27
Gao P , Postiglione MP , Krieger TG , Hernandez L , Wang C , Han Z , Streicher C , Papusheva E , Insolera R , Chugh K et al (2014) Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell 159: 775- 788

DOI

28
Gautier CA , Kitada T , Shen J (2008) Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci U S A 105: 11364- 11369

DOI

29
Geschwind DH , Rakic P (2013) Cortical evolution: judge the brain by its cover. Neuron 80: 633- 647

DOI

30
Giasson BI , Duda JE , Quinn SM , Zhang B , Trojanowski JQ , Lee VMY (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34: 521- 533

DOI

31
Gispert S , Ricciardi F , Kurz A , Azizov M , Hoepken H-H , Becker D , Voos W , Leuner K , Muller WE , Kudin AP et al (2009) Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS ONE 4: e5777

DOI

32
Goertsen D , Flytzanis NC , Goeden N , Chuapoco MR , Cummins A , Chen Y , Fan Y , Zhang Q , Sharma J , Duan Y et al (2021) AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat Neurosci 25 (1): 106- 115

33
Goldberg MS , Fleming SM , Palacino JJ , Cepeda C , Lam HA , Bhatnagar A , Meloni EG , Wu N , Ackerson LC , Klapstein GJ et al (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278: 43628- 43635

DOI

34
Grad LI , Rouleau GA , Ravits J , Cashman NR (2017) Clinical spectrum of amyotrophic lateral sclerosis (ALS). Cold Spring Harb Perspect Med 7 (8): a024117

DOI

35
Hauschild J , Petersen B , Santiago Y , Queisser A-L , Carnwath JW , Lucas-Hahn A , Zhang L , Meng X , Gregory PD , Schwinzer R et al (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci USA 108: 12013- 12017

DOI

36
Hawrylycz M , Miller JA , Menon V , Feng D , Dolbeare T , Guillozet-Bongaarts AL , Jegga AG , Aronow BJ , Lee C-K , Bernard A et al (2015) Canonical genetic signatures of the adult human brain. Nat Neurosci 18: 1832- 1844

DOI

37
Herculano-Houzel S (2012) The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci USA 109(Suppl 1): 10661- 10668

38
Huang C , Tong J , Bi F , Zhou H , Xia X-G (2012) Mutant TDP-43 in motor neurons promotes the onset and progression of ALS in rats. J Clin Invest 122: 107- 118

DOI

39
Incontro S , Asensio CS , Edwards RH , Nicoll RA (2014) Efficient, complete deletion of synaptic proteins using CRISPR. Neuron 83: 1051- 1057

DOI

40
Ip CW , Klaus L-C , Karikari AA , Visanji NP , Brotchie JM , Lang AE , Volkmann J , Koprich JB (2017) AAV1/2-induced overexpression of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson’s disease. Acta Neuropathol Commun 5: 11

DOI

41
Izpisua Belmonte JC , Callaway EM , Caddick SJ , Churchland P , Feng G , Homanics GE , Lee K-F , Leopold DA , Miller CT , Mitchell JF et al (2015) Brains, genes, and primates. Neuron 86: 617- 631

DOI

42
Jacobsen JC , Bawden CS , Rudiger SR , McLaughlan CJ , Reid SJ , Waldvogel HJ , MacDonald ME , Gusella JF , Walker SK , Kelly JM et al (2010) An ovine transgenic Huntington’s disease model. Hum Mol Genet 19: 1873- 1882

DOI

43
Kakita A , Oyanagi K , Nagai H , Takahashi H (1997) Eosinophilic intranuclear inclusions in the hippocampal pyramidal neurons of a patient with amyotrophic lateral sclerosis. Acta Neuropathol 93: 532- 536

DOI

44
Kitada T , Pisani A , Porter DR , Yamaguchi H , Tscherter A , Martella G , Bonsi P , Zhang C , Pothos EN , Shen J (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci USA 104: 11441- 11446

DOI

45
Kitada T , Tong Y , Gautier CA , Shen J (2009) Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J Neurochem 111: 696- 702

DOI

46
Lagier-Tourenne C , Cleveland DW (2009) Rethinking ALS: the FUS about TDP-43. Cell 136: 1001- 1004

DOI

47
Lanoiselée H-M , Nicolas G , Wallon D , Rovelet-Lecrux A , Lacour M , Rousseau S , Richard A-C , Pasquier F , Rollin-Sillaire A , Martinaud O et al (2017) APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: a genetic screening study of familial and sporadic cases. PLoS Med 14: e1002270

DOI

48
Lee MK , Stirling W , Xu Y , Xu X , Qui D , Mandir AS , Dawson TM , Copeland NG , Jenkins NA , Price DL (2002) Human alphasynuclein-harboring familial Parkinson’s disease-linked Ala-53 -> Thr mutation causes neurodegenerative disease with alphasynuclein aggregation in transgenic mice. Proc Natl Acad Sci USA 99: 8968- 8973

DOI

49
Levine MS , Cepeda C , Hickey MA , Fleming SM , Chesselet M-F (2004) Genetic mouse models of Huntington’s and Parkinson’s diseases: illuminating but imperfect. Trends Neurosci 27: 691- 697

DOI

50
Li H , Wu S , Ma X , Li X , Cheng T , Chen Z , Wu J , Lv L , Li L , Xu L et al (2021) Co-editing PINK1 and DJ-1 genes via adeno-associated virus-delivered CRISPR/Cas9 system in adult monkey brain elicits classical Parkinsonian phenotype. Neurosci Bull 37: 1271- 1288

DOI

51
Liu Z , Li X , Zhang JT , Cai YJ , Cheng TL , Cheng C , Wang Y , Zhang CC , Nie YH , Chen ZF et al (2016) Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature 530 (7588): 98- 102

DOI

52
Liu Z , Cai Y , Wang Y , Nie Y , Zhang C , Xu Y , Zhang X , Lu Y , Wang Z , Poo M et al (2018) Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 174: 245

DOI

53
Lunney JK , Van Goor A , Walker KE , Hailstock T , Franklin J , Dai C (2021) Importance of the pig as a human biomedical model. Sci Transl Med 13: eabd5758

DOI

54
McInerney-Leo A , Hadley DW , Gwinn-Hardy K , Hardy J (2005) Genetic testing in Parkinson’s disease. Mov Disord 20: 1- 10

DOI

55
Mitchell JC , Constable R , So E , Vance C , Scotter E , Glover L , Hortobagyi T , Arnold ES , Ling S-C , McAlonis M et al (2015) Wild type human TDP-43 potentiates ALS-linked mutant TDP-43 driven progressive motor and cortical neuron degeneration with pathological features of ALS. Acta Neuropathol Commun 3: 36

DOI

56
Molyneaux BJ , Goff LA , Brettler AC , Chen H-H , Hrvatin S , Rinn JL , Arlotta P (2015) DeCoN: genome-wide analysis of in vivo transcriptional dynamics during pyramidal neuron fate selection in neocortex. Neuron 85: 275- 288

DOI

57
Neumann M , Sampathu DM , Kwong LK , Truax AC , Micsenyi MC , Chou TT , Bruce J , Schuck T , Grossman M , Clark CM et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314: 130- 133

DOI

58
Niu Y , Guo X , Chen Y , Wang C-E , Gao J , Yang W , Kang Y , Si W , Wang H , Yang S-H et al (2015) Early Parkinson’s disease symptoms in alpha-synuclein transgenic monkeys. Hum Mol Genet 24: 2308- 2317

DOI

59
Orr HT , Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30: 575- 621

DOI

60
Otani T , Marchetto MC , Gage FH , Simons BD , Livesey FJ (2016) 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size. Cell Stem Cell 18: 467- 480

DOI

61
Perez FA , Palmiter RD (2005) Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci USA 102: 2174- 2179

DOI

62
Philips T , Rothstein JD (2015) Rodent models of amyotrophic lateral sclerosis. Curr Protoc Pharmacol 69: 5.67.1- 5.67.21

63
Pickrell AM , Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85: 257- 273

DOI

64
Polymenidou M , Lagier-Tourenne C , Hutt KR , Huelga SC , Moran J , Liang TY , Ling S-C , Sun E , Wancewicz E , Mazur C et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14: 459- 468

DOI

65
Rash BG , Duque A , Morozov YM , Arellano JI , Micali N , Rakic P (2019) Gliogenesis in the outer subventricular zone promotes enlargement and gyrification of the primate cerebrum. Proc Natl Acad Sci USA 116: 7089- 7094

DOI

66
Reid SJ , Patassini S , Handley RR , Rudiger SR , McLaughlan CJ , Osmand A , Jacobsen JC , Morton AJ , Weiss A , Waldvogel HJ et al (2013) Further molecular characterisation of the OVT73 transgenic sheep model of Huntington’s disease identifies cortical aggregates. J Huntingtons Dis 2: 279- 295

DOI

67
Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443: 780- 786

DOI

68
Ryu J , Prather RS , Lee K (2018) Use of gene-editing technology to introduce targeted modifications in pigs. J Anim Sci Biotechnol 9: 5

DOI

69
Schuldenzucker V , Schubert R , Muratori LM , Freisfeld F , Rieke L , Matheis T , Schramke S , Motlik J , Kemper N , Radespiel U et al (2017) Behavioral testing of minipigs transgenic for the Huntington gene-A three-year observational study. PloS one 12: e0185970

DOI

70
Seilhean D , Takahashi J , El Hachimi KH , Fujigasaki H , Lebre A-S , Biancalana V , Dürr A , Salachas F , Hogenhuis J , de Thé H et al (2004) Amyotrophic lateral sclerosis with neuronal intranuclear protein inclusions. Acta Neuropathol 108: 81- 87

DOI

71
Shan X , Chiang P-M , Price DL , Wong PC (2010) Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci USA 107: 16325- 16330

DOI

72
Smart IHM , Dehay C , Giroud P , Berland M , Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12: 37- 53

DOI

73
Soto C , Pritzkow S (2018) Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci 21: 1332- 1340

DOI

74
Sousa AMM , Zhu Y , Raghanti MA , Kitchen RR , Onorati M , Tebbenkamp ATN , Stutz B , Meyer KA , Li M , Kawasawa YI et al (2017) Molecular and cellular reorganization of neural circuits in the human lineage. Science 358: 1027- 1032

DOI

75
Sun Z , Ye J , Yuan J (2021) PINK1 mediates neuronal survival in monkey. Protein Cell.

DOI

76
Swami M , Hendricks AE , Gillis T , Massood T , Mysore J , Myers RH , Wheeler VC (2009) Somatic expansion of the Huntington’s disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum Mol Genet 18: 3039- 3047

DOI

77
Swiech L , Heidenreich M , Banerjee A , Habib N , Li Y , Trombetta J , Sur M , Zhang F (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33: 102- 106

DOI

78
Tabrizi SJ , Flower MD , Ross CA , Wild EJ (2020) Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 16: 529- 546

DOI

79
Turner MR , Hardiman O , Benatar M , Brooks BR , Chio A , de Carvalho M , Ince PG , Lin C , Miller RG , Mitsumoto H et al (2013) Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 12: 310- 322

DOI

80
Uchida A , Sasaguri H , Kimura N , Tajiri M , Ohkubo T , Ono F , Sakaue F , Kanai K , Hirai T , Sano T et al (2012) Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43. Brain 135: 833- 846

DOI

81
Valente EM , Abou-Sleiman PM , Caputo V , Muqit MMK , Harvey K , Gispert S , Ali Z , Del Turco D , Bentivoglio AR , Healy DG et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304: 1158- 1160

DOI

82
Wang G , Yang H , Yan S , Wang C-E , Liu X , Zhao B , Ouyang Z , Yin P , Liu Z , Zhao Y et al (2015) Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain. Mol Neurodegener 10: 42

DOI

83
Wang X , Cao C , Huang J , Yao J , Hai T , Zheng Q , Wang X , Zhang H , Qin G , Cheng J et al (2016) One-step generation of triple genetargeted pigs using CRISPR/Cas9 system. Sci Rep 6: 20620

DOI

84
Wang K , Jin Q , Ruan D , Yang Y , Liu Q , Wu H , Zhou Z , Ouyang Z , Liu Z , Zhao Y et al (2017) Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing. Genome Res 27: 2061- 2071

DOI

85
Wang F , Zhang W , Yang Q , Kang Y , Fan Y , Wei J , Liu Z , Dai S , Li H , Li Z et al (2020) Generation of a Hutchinson-Gilford progeria syndrome monkey model by base editing. Protein Cell 11: 809- 824

DOI

86
Wegorzewska I , Bell S , Cairns NJ , Miller TM , Baloh RH (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 106: 18809- 18814

DOI

87
Weishaupt JH , Hyman T , Dikic I (2016) Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia. Trends Mol Med 22: 769- 783

DOI

88
Weiss AR , Liguore WA , Domire JS , Button D , McBride JL (2020) Intra-striatal AAV2. retro administration leads to extensive retrograde transport in the rhesus macaque brain: implications for disease modeling and therapeutic development. Sci Rep 10: 6970

DOI

89
Whitworth AJ , Pallanck LJ (2017) PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo? Curr Opin Genet Dev 44: 47- 53

DOI

90
Wils H , Kleinberger G , Janssens J , Pereson S , Joris G , Cuijt I , Smits V , Ceuterick-de Groote C , Van Broeckhoven C , Kumar-Singh S (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 107: 3858- 3863

DOI

91
Wyss-Coray T (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539: 180- 186

DOI

92
Xie J , Ge W , Li N , Liu Q , Chen F , Yang X , Huang X , Ouyang Z , Zhang Q , Zhao Y et al (2019) Efficient base editing for multiple genes and loci in pigs using base editors. Nat Commun 10: 2852

DOI

93
Xiong H , Wang D , Chen L , Choo YS , Ma H , Tang C , Xia K , Jiang W , Ronai Z , Zhuang X et al (2009) Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest 119: 650- 660

DOI

94
Yan S , Wang C-E , Wei W , Gaertig MA , Lai L , Li S , Li X-J (2014) TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain. Hum Mol Genet 23: 2678- 2693

DOI

95
Yan S , Tu Z , Liu Z , Fan N , Yang H , Yang S , Yang W , Zhao Y , Ouyang Z , Lai C et al (2018) A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell 173: 989- 1002

DOI

96
Yang S-H , Cheng P-H , Banta H , Piotrowska-Nitsche K , Yang J-J , Cheng ECH , Snyder B , Larkin K , Liu J , Orkin J et al (2008) Towards a transgenic model of Huntington’s disease in a nonhuman primate. Nature 453: 921- 924

DOI

97
Yang D , Wang C-E , Zhao B , Li W , Ouyang Z , Liu Z , Yang H , Fan P , O’Neill A , Gu W et al (2010) Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Hum Mol Genet 19: 3983- 3994

DOI

98
Yang H , Wang G , Sun H , Shu R , Liu T , Wang C-E , Liu Z , Zhao Y , Zhao B , Ouyang Z et al (2014) Species-dependent neuropathology in transgenic SOD1 pigs. Cell Res 24: 464- 481

DOI

99
Yang W , Wang G , Wang C-E , Guo X , Yin P , Gao J , Tu Z , Wang Z , Wu J , Hu X et al (2015) Mutant alpha-synuclein causes agedependent neuropathology in monkey brain. J Neurosci 35: 8345- 8358

DOI

100
Yang W , Li S , Li X-J (2019a) A CRISPR monkey model unravels a unique function of PINK1 in primate brains. Mol Neurodegener 14: 17

DOI

101
Yang W , Liu Y , Tu Z , Xiao C , Yan S , Ma X , Guo X , Chen X , Yin P , Yang Z et al (2019b) CRISPR/Cas9-mediated PINK1 deletion leads to neurodegeneration in rhesus monkeys. Cell Res 29 (4): 334- 336

DOI

102
Yang W , Chen X , Li S , Li X-J (2021a) Genetically modified large animal models for investigating neurodegenerative diseases. Cell Biosci 11: 218

DOI

103
Yang W , Guo X , Tu Z , Chen X , Han R , Liu Y , Yan S , Wang Q , Wang Z , Zhao X et al (2021b) PINK1 kinase dysfunction triggers neurodegeneration in the primate brain without impacting mitochondrial homeostasis. Protein Cell.

DOI

104
Yin P , Guo X , Yang W , Yan S , Yang S , Zhao T , Sun Q , Liu Y , Li S , Li X-J (2019) Caspase-4 mediates cytoplasmic accumulation of TDP-43 in the primate brains. Acta Neuropathol 137 (6): 919- 937

DOI

105
Yin P , Bai D , Deng F , Zhang C , Jia Q , Zhu L , Chen L , Li B , Guo X , Ye J et al (2021) SQSTM1-mediated clearance of cytoplasmic mutant TARDBP/TDP-43 in the monkey brain. Autophagy.

DOI

106
Zeisel A , Muñoz-Manchado AB , Codeluppi S , Lönnerberg P , La Manno G , Juréus A , Marques S , Munguba H , He L , Betsholtz C et al (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347: 1138- 1142

DOI

107
Zeng H , Shen EH , Hohmann JG , Oh SW , Bernard A , Royall JJ , Glattfelder KJ , Sunkin SM , Morris JA , Guillozet-Bongaarts AL et al (2012) Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell 149: 483- 496

DOI

108
Zhang W , Wan H , Feng G , Qu J , Wang J , Jing Y , Ren R , Liu Z , Zhang L , Chen Z et al (2018) SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560: 661- 665

DOI

109
Zhang H , Li J , Ren J , Sun S , Ma S , Zhang W , Yu Y , Cai Y , Yan K , Li W et al (2021) Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell 12: 695- 716

DOI

110
Zhao H , Tu Z , Xu H , Yan S , Yan H , Zheng Y , Yang W , Zheng J , Li Z , Tian R et al (2017) Altered neurogenesis and disrupted expression of synaptic proteins in prefrontal cortex of SHANK3-deficient non-human primate. Cell Res 27: 1293- 1297

DOI

111
Zhao J , Lai L , Ji W , Zhou Q (2019) Genome editing in large animals:current status and future prospects. Natl Sci Rev 6: 402- 420

DOI

112
Zhou H , Falkenburger BH , Schulz JB , Tieu K , Xu Z , Xia XG (2007) Silencing of the Pink1 gene expression by conditional RNAi does not induce dopaminergic neuron death in mice. Int J Biol Sci 3: 242- 250

113
Zhou X , Xin J , Fan N , Zou Q , Huang J , Ouyang Z , Zhao Y , Zhao B , Liu Z , Lai S et al (2015) Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72: 1175- 1184

DOI

114
Zhou Y , Sharma J , Ke Q , Landman R , Yuan J , Chen H , Hayden DS , Fisher JW , 3rd Jiang M , Menegas W et al (2019) Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature 570: 326- 331

DOI

115
Zhu Y , Sousa AMM , Gao T , Skarica M , Li M , Santpere G , Esteller-Cucala P , Juan D , Ferrández-Peral L , Gulden FO et al (2018) Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362: eaat8077

DOI

116
Zoghbi HY , Botas J (2002) Mouse and fly models of neurodegeneration. Trends Genet 18: 463- 471

DOI

Outlines

/