New pathogenic insights from large animal models of neurodegenerative diseases

Peng Yin, Shihua Li, Xiao-Jiang Li, Weili Yang

PDF(727 KB)
PDF(727 KB)
Protein Cell ›› 2022, Vol. 13 ›› Issue (10) : 707-720. DOI: 10.1007/s13238-022-00912-8
REVIEW
REVIEW

New pathogenic insights from large animal models of neurodegenerative diseases

Author information +
History +

Abstract

Animal models are essential for investigating the pathogenesis and developing the treatment of human diseases. Identification of genetic mutations responsible for neurodegenerative diseases has enabled the creation of a large number of small animal models that mimic genetic defects found in the affected individuals. Of the current animal models, rodents with genetic modifications are the most commonly used animal models and provided important insights into pathogenesis. However, most of genetically modified rodent models lack overt neurodegeneration, imposing challenges and obstacles in utilizing them to rigorously test the therapeutic effects on neurodegeneration. Recent studies that used CRISPR/Cas9-targeted large animal (pigs and monkeys) have uncovered important pathological events that resemble neurodegeneration in the patient’s brain but could not be produced in small animal models. Here we highlight the unique nature of large animals to model neurodegenerative diseases as well as the limitations and challenges in establishing large animal models of neurodegenerative diseases, with focus on Huntington disease, Amyotrophic lateral sclerosis, and Parkinson diseases. We also discuss how to use the important pathogenic insights from large animal models to make rodent models more capable of recapitulating important pathological features of neurodegenerative diseases.

Keywords

large animal models / neurodegenerative diseases / CRISPR/Cas9

Cite this article

Download citation ▾
Peng Yin, Shihua Li, Xiao-Jiang Li, Weili Yang. New pathogenic insights from large animal models of neurodegenerative diseases. Protein Cell, 2022, 13(10): 707‒720 https://doi.org/10.1007/s13238-022-00912-8

References

[1]
Akundi RS , Huang Z , Eason J , Pandya JD , Zhi L , Cass WA , Sullivan PG , Bueler H (2011) Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS ONE 6: e16038
CrossRef Google scholar
[2]
Arai T , Hasegawa M , Akiyama H , Ikeda K , Nonaka T , Mori H , Mann D , Tsuchiya K , Yoshida M , Hashizume Y et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351: 602- 611
CrossRef Google scholar
[3]
Bai D , Yin P , Zhang Y , Sun F , Chen L , Lin L , Yan S , Li S , Li X-J (2021) Lack of association of somatic CAG repeat expansion with striatal neurodegeneration in HD knock-in animal models. Hum Mol Genet 30: 1497- 1508
CrossRef Google scholar
[4]
Bakken TE , Miller JA , Ding S-L , Sunkin SM , Smith KA , Ng L , Szafer A , Dalley RA , Royall JJ , Lemon T et al (2016) A comprehensive transcriptional map of primate brain development. Nature 535: 367- 375
CrossRef Google scholar
[5]
Bates GP , Dorsey R , Gusella JF , Hayden MR , Kay C , Leavitt BR , Nance M , Ross CA , Scahill RI , Wetzel R et al (2015) Huntington disease. Nat Rev Dis Prim 1: 15005
CrossRef Google scholar
[6]
Baxa M , Hruska-Plochan M , Juhas S , Vodicka P , Pavlok A , Juhasova J , Miyanohara A , Nejime T , Klima J , Macakova M et al (2013) A transgenic minipig model of Huntington’s disease. J Huntingtons Dis 2: 47- 68
CrossRef Google scholar
[7]
Bernard A , Lubbers LS , Tanis KQ , Luo R , Podtelezhnikov AA , Finney EM , McWhorter MME , Serikawa K , Lemon T , Morgan R et al (2012) Transcriptional architecture of the primate neocortex. Neuron 73: 1083- 1099
CrossRef Google scholar
[8]
Chan KY , Jang MJ , Yoo BB , Greenbaum A , Ravi N , Wu W-L , Sánchez-Guardado L , Lois C , Mazmanian SK , Deverman BE et al (2017) Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 20: 1172- 1179
CrossRef Google scholar
[9]
Chen B , Niu Y , Wang H , Wang K , Yang H , Li W (2020) Recent advances in CRISPR research. Protein Cell 11: 786- 791
CrossRef Google scholar
[10]
Chen Z-Z , Wang J-Y , Kang Y , Yang Q-Y , Gu X-Y , Zhi D-L , Yan L , Long C-Z , Shen B , Niu Y-Y (2021) PINK1 gene mutation by pair truncated sgRNA/Cas9-D10A in cynomolgus monkeys. Zool Res 42: 469- 477
CrossRef Google scholar
[11]
Chen-Plotkin AS , Lee VM-Y , Trojanowski JQ (2010) TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6: 211- 220
CrossRef Google scholar
[12]
Chieppa MN , Perota A , Corona C , Grindatto A , Lagutina I , Vallino Costassa E , Lazzari G , Colleoni S , Duchi R , Lucchini F et al (2014) Modeling amyotrophic lateral sclerosis in hSOD1 transgenic swine. Neurodegener Dis 13: 246- 254
CrossRef Google scholar
[13]
Corti O , Lesage S , Brice A (2011) What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev 91: 1161- 1218
CrossRef Google scholar
[14]
Crook ZR , Housman D (2011) Huntington’s disease: can mice lead the way to treatment? Neuron 69: 423- 435
CrossRef Google scholar
[15]
Cummins N , Gotz J (2018) Shedding light on mitophagy in neurons:what is the evidence for PINK1/Parkin mitophagy in vivo? Cell Mol Life Sci 75: 1151- 1162
CrossRef Google scholar
[16]
Damier P , Hirsch EC , Agid Y , Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopaminecontaining neurons in Parkinson’s disease. Brain 122 (8): 1437- 1448
CrossRef Google scholar
[17]
Darmanis S , Sloan SA , Zhang Y , Enge M , Caneda C , Shuer LM , Hayden Gephart MG , Barres BA , Quake SR (2015) A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci U S A 112: 7285- 7290
CrossRef Google scholar
[18]
Davies SW , Turmaine M , Cozens BA , DiFiglia M , Sharp AH , Ross CA , Scherzinger E , Wanker EE , Mangiarini L , Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90: 537- 548
CrossRef Google scholar
[19]
Dawson TM , Golde TE , Lagier-Tourenne C (2018) Animal models of neurodegenerative diseases. Nat Neurosci 21: 1370- 1379
CrossRef Google scholar
[20]
Defelipe J (2011) The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front Neuroanat 5: 29
[21]
Deng HX , Siddique T (2000) Transgenic mouse models and human neurodegenerative disorders. Arch Neurol 57: 1695- 1702
CrossRef Google scholar
[22]
Deng H , Wang P , Jankovic J (2018) The genetics of Parkinson disease. Ageing Res Rev 42: 72- 85
CrossRef Google scholar
[23]
Dugger BN , Perl DP , Carlson GA (2017) Neurodegenerative disease transmission and transgenesis in mice. Cold Spring Harb Perspect Biol 9 (11): a023549
CrossRef Google scholar
[24]
Farshim PP , Bates GP (2018) Mouse models of Huntington’s disease. Methods Mol Biol 1780: 97- 120
[25]
Ferraiuolo L , Kirby J , Grierson AJ , Sendtner M , Shaw PJ (2011) Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7: 616- 630
CrossRef Google scholar
[26]
Forsberg K , Andersen PM , Marklund SL , Brännström T (2011) Glial nuclear aggregates of superoxide dismutase-1 are regularly present in patients with amyotrophic lateral sclerosis. Acta Neuropathol 121: 623- 634
CrossRef Google scholar
[27]
Gao P , Postiglione MP , Krieger TG , Hernandez L , Wang C , Han Z , Streicher C , Papusheva E , Insolera R , Chugh K et al (2014) Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell 159: 775- 788
CrossRef Google scholar
[28]
Gautier CA , Kitada T , Shen J (2008) Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci U S A 105: 11364- 11369
CrossRef Google scholar
[29]
Geschwind DH , Rakic P (2013) Cortical evolution: judge the brain by its cover. Neuron 80: 633- 647
CrossRef Google scholar
[30]
Giasson BI , Duda JE , Quinn SM , Zhang B , Trojanowski JQ , Lee VMY (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34: 521- 533
CrossRef Google scholar
[31]
Gispert S , Ricciardi F , Kurz A , Azizov M , Hoepken H-H , Becker D , Voos W , Leuner K , Muller WE , Kudin AP et al (2009) Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS ONE 4: e5777
CrossRef Google scholar
[32]
Goertsen D , Flytzanis NC , Goeden N , Chuapoco MR , Cummins A , Chen Y , Fan Y , Zhang Q , Sharma J , Duan Y et al (2021) AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat Neurosci 25 (1): 106- 115
[33]
Goldberg MS , Fleming SM , Palacino JJ , Cepeda C , Lam HA , Bhatnagar A , Meloni EG , Wu N , Ackerson LC , Klapstein GJ et al (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278: 43628- 43635
CrossRef Google scholar
[34]
Grad LI , Rouleau GA , Ravits J , Cashman NR (2017) Clinical spectrum of amyotrophic lateral sclerosis (ALS). Cold Spring Harb Perspect Med 7 (8): a024117
CrossRef Google scholar
[35]
Hauschild J , Petersen B , Santiago Y , Queisser A-L , Carnwath JW , Lucas-Hahn A , Zhang L , Meng X , Gregory PD , Schwinzer R et al (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci USA 108: 12013- 12017
CrossRef Google scholar
[36]
Hawrylycz M , Miller JA , Menon V , Feng D , Dolbeare T , Guillozet-Bongaarts AL , Jegga AG , Aronow BJ , Lee C-K , Bernard A et al (2015) Canonical genetic signatures of the adult human brain. Nat Neurosci 18: 1832- 1844
CrossRef Google scholar
[37]
Herculano-Houzel S (2012) The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci USA 109(Suppl 1): 10661- 10668
[38]
Huang C , Tong J , Bi F , Zhou H , Xia X-G (2012) Mutant TDP-43 in motor neurons promotes the onset and progression of ALS in rats. J Clin Invest 122: 107- 118
CrossRef Google scholar
[39]
Incontro S , Asensio CS , Edwards RH , Nicoll RA (2014) Efficient, complete deletion of synaptic proteins using CRISPR. Neuron 83: 1051- 1057
CrossRef Google scholar
[40]
Ip CW , Klaus L-C , Karikari AA , Visanji NP , Brotchie JM , Lang AE , Volkmann J , Koprich JB (2017) AAV1/2-induced overexpression of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson’s disease. Acta Neuropathol Commun 5: 11
CrossRef Google scholar
[41]
Izpisua Belmonte JC , Callaway EM , Caddick SJ , Churchland P , Feng G , Homanics GE , Lee K-F , Leopold DA , Miller CT , Mitchell JF et al (2015) Brains, genes, and primates. Neuron 86: 617- 631
CrossRef Google scholar
[42]
Jacobsen JC , Bawden CS , Rudiger SR , McLaughlan CJ , Reid SJ , Waldvogel HJ , MacDonald ME , Gusella JF , Walker SK , Kelly JM et al (2010) An ovine transgenic Huntington’s disease model. Hum Mol Genet 19: 1873- 1882
CrossRef Google scholar
[43]
Kakita A , Oyanagi K , Nagai H , Takahashi H (1997) Eosinophilic intranuclear inclusions in the hippocampal pyramidal neurons of a patient with amyotrophic lateral sclerosis. Acta Neuropathol 93: 532- 536
CrossRef Google scholar
[44]
Kitada T , Pisani A , Porter DR , Yamaguchi H , Tscherter A , Martella G , Bonsi P , Zhang C , Pothos EN , Shen J (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci USA 104: 11441- 11446
CrossRef Google scholar
[45]
Kitada T , Tong Y , Gautier CA , Shen J (2009) Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J Neurochem 111: 696- 702
CrossRef Google scholar
[46]
Lagier-Tourenne C , Cleveland DW (2009) Rethinking ALS: the FUS about TDP-43. Cell 136: 1001- 1004
CrossRef Google scholar
[47]
Lanoiselée H-M , Nicolas G , Wallon D , Rovelet-Lecrux A , Lacour M , Rousseau S , Richard A-C , Pasquier F , Rollin-Sillaire A , Martinaud O et al (2017) APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: a genetic screening study of familial and sporadic cases. PLoS Med 14: e1002270
CrossRef Google scholar
[48]
Lee MK , Stirling W , Xu Y , Xu X , Qui D , Mandir AS , Dawson TM , Copeland NG , Jenkins NA , Price DL (2002) Human alphasynuclein-harboring familial Parkinson’s disease-linked Ala-53 -> Thr mutation causes neurodegenerative disease with alphasynuclein aggregation in transgenic mice. Proc Natl Acad Sci USA 99: 8968- 8973
CrossRef Google scholar
[49]
Levine MS , Cepeda C , Hickey MA , Fleming SM , Chesselet M-F (2004) Genetic mouse models of Huntington’s and Parkinson’s diseases: illuminating but imperfect. Trends Neurosci 27: 691- 697
CrossRef Google scholar
[50]
Li H , Wu S , Ma X , Li X , Cheng T , Chen Z , Wu J , Lv L , Li L , Xu L et al (2021) Co-editing PINK1 and DJ-1 genes via adeno-associated virus-delivered CRISPR/Cas9 system in adult monkey brain elicits classical Parkinsonian phenotype. Neurosci Bull 37: 1271- 1288
CrossRef Google scholar
[51]
Liu Z , Li X , Zhang JT , Cai YJ , Cheng TL , Cheng C , Wang Y , Zhang CC , Nie YH , Chen ZF et al (2016) Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature 530 (7588): 98- 102
CrossRef Google scholar
[52]
Liu Z , Cai Y , Wang Y , Nie Y , Zhang C , Xu Y , Zhang X , Lu Y , Wang Z , Poo M et al (2018) Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 174: 245
CrossRef Google scholar
[53]
Lunney JK , Van Goor A , Walker KE , Hailstock T , Franklin J , Dai C (2021) Importance of the pig as a human biomedical model. Sci Transl Med 13: eabd5758
CrossRef Google scholar
[54]
McInerney-Leo A , Hadley DW , Gwinn-Hardy K , Hardy J (2005) Genetic testing in Parkinson’s disease. Mov Disord 20: 1- 10
CrossRef Google scholar
[55]
Mitchell JC , Constable R , So E , Vance C , Scotter E , Glover L , Hortobagyi T , Arnold ES , Ling S-C , McAlonis M et al (2015) Wild type human TDP-43 potentiates ALS-linked mutant TDP-43 driven progressive motor and cortical neuron degeneration with pathological features of ALS. Acta Neuropathol Commun 3: 36
CrossRef Google scholar
[56]
Molyneaux BJ , Goff LA , Brettler AC , Chen H-H , Hrvatin S , Rinn JL , Arlotta P (2015) DeCoN: genome-wide analysis of in vivo transcriptional dynamics during pyramidal neuron fate selection in neocortex. Neuron 85: 275- 288
CrossRef Google scholar
[57]
Neumann M , Sampathu DM , Kwong LK , Truax AC , Micsenyi MC , Chou TT , Bruce J , Schuck T , Grossman M , Clark CM et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314: 130- 133
CrossRef Google scholar
[58]
Niu Y , Guo X , Chen Y , Wang C-E , Gao J , Yang W , Kang Y , Si W , Wang H , Yang S-H et al (2015) Early Parkinson’s disease symptoms in alpha-synuclein transgenic monkeys. Hum Mol Genet 24: 2308- 2317
CrossRef Google scholar
[59]
Orr HT , Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30: 575- 621
CrossRef Google scholar
[60]
Otani T , Marchetto MC , Gage FH , Simons BD , Livesey FJ (2016) 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size. Cell Stem Cell 18: 467- 480
CrossRef Google scholar
[61]
Perez FA , Palmiter RD (2005) Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci USA 102: 2174- 2179
CrossRef Google scholar
[62]
Philips T , Rothstein JD (2015) Rodent models of amyotrophic lateral sclerosis. Curr Protoc Pharmacol 69: 5.67.1- 5.67.21
[63]
Pickrell AM , Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85: 257- 273
CrossRef Google scholar
[64]
Polymenidou M , Lagier-Tourenne C , Hutt KR , Huelga SC , Moran J , Liang TY , Ling S-C , Sun E , Wancewicz E , Mazur C et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14: 459- 468
CrossRef Google scholar
[65]
Rash BG , Duque A , Morozov YM , Arellano JI , Micali N , Rakic P (2019) Gliogenesis in the outer subventricular zone promotes enlargement and gyrification of the primate cerebrum. Proc Natl Acad Sci USA 116: 7089- 7094
CrossRef Google scholar
[66]
Reid SJ , Patassini S , Handley RR , Rudiger SR , McLaughlan CJ , Osmand A , Jacobsen JC , Morton AJ , Weiss A , Waldvogel HJ et al (2013) Further molecular characterisation of the OVT73 transgenic sheep model of Huntington’s disease identifies cortical aggregates. J Huntingtons Dis 2: 279- 295
CrossRef Google scholar
[67]
Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443: 780- 786
CrossRef Google scholar
[68]
Ryu J , Prather RS , Lee K (2018) Use of gene-editing technology to introduce targeted modifications in pigs. J Anim Sci Biotechnol 9: 5
CrossRef Google scholar
[69]
Schuldenzucker V , Schubert R , Muratori LM , Freisfeld F , Rieke L , Matheis T , Schramke S , Motlik J , Kemper N , Radespiel U et al (2017) Behavioral testing of minipigs transgenic for the Huntington gene-A three-year observational study. PloS one 12: e0185970
CrossRef Google scholar
[70]
Seilhean D , Takahashi J , El Hachimi KH , Fujigasaki H , Lebre A-S , Biancalana V , Dürr A , Salachas F , Hogenhuis J , de Thé H et al (2004) Amyotrophic lateral sclerosis with neuronal intranuclear protein inclusions. Acta Neuropathol 108: 81- 87
CrossRef Google scholar
[71]
Shan X , Chiang P-M , Price DL , Wong PC (2010) Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci USA 107: 16325- 16330
CrossRef Google scholar
[72]
Smart IHM , Dehay C , Giroud P , Berland M , Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12: 37- 53
CrossRef Google scholar
[73]
Soto C , Pritzkow S (2018) Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci 21: 1332- 1340
CrossRef Google scholar
[74]
Sousa AMM , Zhu Y , Raghanti MA , Kitchen RR , Onorati M , Tebbenkamp ATN , Stutz B , Meyer KA , Li M , Kawasawa YI et al (2017) Molecular and cellular reorganization of neural circuits in the human lineage. Science 358: 1027- 1032
CrossRef Google scholar
[75]
Sun Z , Ye J , Yuan J (2021) PINK1 mediates neuronal survival in monkey. Protein Cell.
CrossRef Google scholar
[76]
Swami M , Hendricks AE , Gillis T , Massood T , Mysore J , Myers RH , Wheeler VC (2009) Somatic expansion of the Huntington’s disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum Mol Genet 18: 3039- 3047
CrossRef Google scholar
[77]
Swiech L , Heidenreich M , Banerjee A , Habib N , Li Y , Trombetta J , Sur M , Zhang F (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33: 102- 106
CrossRef Google scholar
[78]
Tabrizi SJ , Flower MD , Ross CA , Wild EJ (2020) Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 16: 529- 546
CrossRef Google scholar
[79]
Turner MR , Hardiman O , Benatar M , Brooks BR , Chio A , de Carvalho M , Ince PG , Lin C , Miller RG , Mitsumoto H et al (2013) Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 12: 310- 322
CrossRef Google scholar
[80]
Uchida A , Sasaguri H , Kimura N , Tajiri M , Ohkubo T , Ono F , Sakaue F , Kanai K , Hirai T , Sano T et al (2012) Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43. Brain 135: 833- 846
CrossRef Google scholar
[81]
Valente EM , Abou-Sleiman PM , Caputo V , Muqit MMK , Harvey K , Gispert S , Ali Z , Del Turco D , Bentivoglio AR , Healy DG et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304: 1158- 1160
CrossRef Google scholar
[82]
Wang G , Yang H , Yan S , Wang C-E , Liu X , Zhao B , Ouyang Z , Yin P , Liu Z , Zhao Y et al (2015) Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain. Mol Neurodegener 10: 42
CrossRef Google scholar
[83]
Wang X , Cao C , Huang J , Yao J , Hai T , Zheng Q , Wang X , Zhang H , Qin G , Cheng J et al (2016) One-step generation of triple genetargeted pigs using CRISPR/Cas9 system. Sci Rep 6: 20620
CrossRef Google scholar
[84]
Wang K , Jin Q , Ruan D , Yang Y , Liu Q , Wu H , Zhou Z , Ouyang Z , Liu Z , Zhao Y et al (2017) Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing. Genome Res 27: 2061- 2071
CrossRef Google scholar
[85]
Wang F , Zhang W , Yang Q , Kang Y , Fan Y , Wei J , Liu Z , Dai S , Li H , Li Z et al (2020) Generation of a Hutchinson-Gilford progeria syndrome monkey model by base editing. Protein Cell 11: 809- 824
CrossRef Google scholar
[86]
Wegorzewska I , Bell S , Cairns NJ , Miller TM , Baloh RH (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 106: 18809- 18814
CrossRef Google scholar
[87]
Weishaupt JH , Hyman T , Dikic I (2016) Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia. Trends Mol Med 22: 769- 783
CrossRef Google scholar
[88]
Weiss AR , Liguore WA , Domire JS , Button D , McBride JL (2020) Intra-striatal AAV2. retro administration leads to extensive retrograde transport in the rhesus macaque brain: implications for disease modeling and therapeutic development. Sci Rep 10: 6970
CrossRef Google scholar
[89]
Whitworth AJ , Pallanck LJ (2017) PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo? Curr Opin Genet Dev 44: 47- 53
CrossRef Google scholar
[90]
Wils H , Kleinberger G , Janssens J , Pereson S , Joris G , Cuijt I , Smits V , Ceuterick-de Groote C , Van Broeckhoven C , Kumar-Singh S (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 107: 3858- 3863
CrossRef Google scholar
[91]
Wyss-Coray T (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539: 180- 186
CrossRef Google scholar
[92]
Xie J , Ge W , Li N , Liu Q , Chen F , Yang X , Huang X , Ouyang Z , Zhang Q , Zhao Y et al (2019) Efficient base editing for multiple genes and loci in pigs using base editors. Nat Commun 10: 2852
CrossRef Google scholar
[93]
Xiong H , Wang D , Chen L , Choo YS , Ma H , Tang C , Xia K , Jiang W , Ronai Z , Zhuang X et al (2009) Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest 119: 650- 660
CrossRef Google scholar
[94]
Yan S , Wang C-E , Wei W , Gaertig MA , Lai L , Li S , Li X-J (2014) TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain. Hum Mol Genet 23: 2678- 2693
CrossRef Google scholar
[95]
Yan S , Tu Z , Liu Z , Fan N , Yang H , Yang S , Yang W , Zhao Y , Ouyang Z , Lai C et al (2018) A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell 173: 989- 1002
CrossRef Google scholar
[96]
Yang S-H , Cheng P-H , Banta H , Piotrowska-Nitsche K , Yang J-J , Cheng ECH , Snyder B , Larkin K , Liu J , Orkin J et al (2008) Towards a transgenic model of Huntington’s disease in a nonhuman primate. Nature 453: 921- 924
CrossRef Google scholar
[97]
Yang D , Wang C-E , Zhao B , Li W , Ouyang Z , Liu Z , Yang H , Fan P , O’Neill A , Gu W et al (2010) Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Hum Mol Genet 19: 3983- 3994
CrossRef Google scholar
[98]
Yang H , Wang G , Sun H , Shu R , Liu T , Wang C-E , Liu Z , Zhao Y , Zhao B , Ouyang Z et al (2014) Species-dependent neuropathology in transgenic SOD1 pigs. Cell Res 24: 464- 481
CrossRef Google scholar
[99]
Yang W , Wang G , Wang C-E , Guo X , Yin P , Gao J , Tu Z , Wang Z , Wu J , Hu X et al (2015) Mutant alpha-synuclein causes agedependent neuropathology in monkey brain. J Neurosci 35: 8345- 8358
CrossRef Google scholar
[100]
Yang W , Li S , Li X-J (2019a) A CRISPR monkey model unravels a unique function of PINK1 in primate brains. Mol Neurodegener 14: 17
CrossRef Google scholar
[101]
Yang W , Liu Y , Tu Z , Xiao C , Yan S , Ma X , Guo X , Chen X , Yin P , Yang Z et al (2019b) CRISPR/Cas9-mediated PINK1 deletion leads to neurodegeneration in rhesus monkeys. Cell Res 29 (4): 334- 336
CrossRef Google scholar
[102]
Yang W , Chen X , Li S , Li X-J (2021a) Genetically modified large animal models for investigating neurodegenerative diseases. Cell Biosci 11: 218
CrossRef Google scholar
[103]
Yang W , Guo X , Tu Z , Chen X , Han R , Liu Y , Yan S , Wang Q , Wang Z , Zhao X et al (2021b) PINK1 kinase dysfunction triggers neurodegeneration in the primate brain without impacting mitochondrial homeostasis. Protein Cell.
CrossRef Google scholar
[104]
Yin P , Guo X , Yang W , Yan S , Yang S , Zhao T , Sun Q , Liu Y , Li S , Li X-J (2019) Caspase-4 mediates cytoplasmic accumulation of TDP-43 in the primate brains. Acta Neuropathol 137 (6): 919- 937
CrossRef Google scholar
[105]
Yin P , Bai D , Deng F , Zhang C , Jia Q , Zhu L , Chen L , Li B , Guo X , Ye J et al (2021) SQSTM1-mediated clearance of cytoplasmic mutant TARDBP/TDP-43 in the monkey brain. Autophagy.
CrossRef Google scholar
[106]
Zeisel A , Muñoz-Manchado AB , Codeluppi S , Lönnerberg P , La Manno G , Juréus A , Marques S , Munguba H , He L , Betsholtz C et al (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347: 1138- 1142
CrossRef Google scholar
[107]
Zeng H , Shen EH , Hohmann JG , Oh SW , Bernard A , Royall JJ , Glattfelder KJ , Sunkin SM , Morris JA , Guillozet-Bongaarts AL et al (2012) Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell 149: 483- 496
CrossRef Google scholar
[108]
Zhang W , Wan H , Feng G , Qu J , Wang J , Jing Y , Ren R , Liu Z , Zhang L , Chen Z et al (2018) SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560: 661- 665
CrossRef Google scholar
[109]
Zhang H , Li J , Ren J , Sun S , Ma S , Zhang W , Yu Y , Cai Y , Yan K , Li W et al (2021) Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell 12: 695- 716
CrossRef Google scholar
[110]
Zhao H , Tu Z , Xu H , Yan S , Yan H , Zheng Y , Yang W , Zheng J , Li Z , Tian R et al (2017) Altered neurogenesis and disrupted expression of synaptic proteins in prefrontal cortex of SHANK3-deficient non-human primate. Cell Res 27: 1293- 1297
CrossRef Google scholar
[111]
Zhao J , Lai L , Ji W , Zhou Q (2019) Genome editing in large animals:current status and future prospects. Natl Sci Rev 6: 402- 420
CrossRef Google scholar
[112]
Zhou H , Falkenburger BH , Schulz JB , Tieu K , Xu Z , Xia XG (2007) Silencing of the Pink1 gene expression by conditional RNAi does not induce dopaminergic neuron death in mice. Int J Biol Sci 3: 242- 250
[113]
Zhou X , Xin J , Fan N , Zou Q , Huang J , Ouyang Z , Zhao Y , Zhao B , Liu Z , Lai S et al (2015) Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72: 1175- 1184
CrossRef Google scholar
[114]
Zhou Y , Sharma J , Ke Q , Landman R , Yuan J , Chen H , Hayden DS , Fisher JW , 3rd Jiang M , Menegas W et al (2019) Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature 570: 326- 331
CrossRef Google scholar
[115]
Zhu Y , Sousa AMM , Gao T , Skarica M , Li M , Santpere G , Esteller-Cucala P , Juan D , Ferrández-Peral L , Gulden FO et al (2018) Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362: eaat8077
CrossRef Google scholar
[116]
Zoghbi HY , Botas J (2002) Mouse and fly models of neurodegeneration. Trends Genet 18: 463- 471
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s)
AI Summary AI Mindmap
PDF(727 KB)

Accesses

Citations

Detail

Sections
Recommended

/